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Introduction of terms
Fractals
− Fractals are of rough or fragmented geometric shape that can be subdivided in parts, each

of which is (at least approximately) a reduced copy of the whole.
− They are crinkly objects that defy conventional measures, such as length and are most

often characterised by their fractal dimension
− They are mathematical sets with a high degree of geometrical complexity that can model

many natural phenomena. Almost all natural objects can be observed as fractals
(coastlines, trees, mountains, and clouds).

− Their fractal dimension strictly exceeds topological dimension

Fractal dimension
− The number, very often non-integer, often the only one measure of fractals
− It measures the degree of fractal boundary fragmentation or irregularity over multiple

scales
− It determines how fractal differs from Euclidean objects (point, line, plane, circle etc.)

Monofractals / Multifractals
− Just a small group of fractals have one certain fractal dimension, which is scale invariant.

These fractals are monofractals
− The most of natural fractals have different fractal dimensions depending on the scale.

They are composed of many fractals with the different fractal dimension. They are called
„multifractals“

− To characterise set of multifractals (e.g. set of the different coastlines) we do not have to
establish all their fractal dimensions, it is enough to evaluate their fractal dimension at the
same scale

Self-similarity/ Semi-self similarity
− Fractal is strictly self-similar if it can be expressed as a union of sets, each of which is an

exactly reduced copy (is geometrically similar to) of the full set (Sierpinski triangle, Koch
flake). The most fractal looking in nature do not display this precise form

− Natural objects are not union of exact reduced copies of whole. A magnified view of one
part will not precisely reproduce the whole object, but it will have the same qualitative
appearance. This property is called statistical self-similarity or semi-self-similarity

Box-Counting method
− One of the methods used to establish fractal dimension
− It determines the fractal dimension of black&white digitised images of fractals
− It works by covering fractal (its image) with boxes (squares) and then evaluating how

many boxes are needed to cover fractal completely. Repeating this measurement with
different sizes of boxes will result into logarithmical function of box size (x-axis) and
number of boxes needed to cover fractal (y-axis). The slope of this function is referred as
box dimension. Box dimension is taken as an appropriate approximation of fractal
dimension.
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Mass method/ Radius dimension method
− Further method used to establish fractal dimension
− It determines the fractal dimension of black&white digitised images of fractals too
− It is based on determination of the dependency between count of black and white pixels

(picture elements) on the square (circle – radius dimension method) shaped plane, with the
varying area. The slope of this dependency is the mass/radius dimension, it is a good
approximation of fractal dimension. Resulting mass/radius dimension should be almost
the same or the same as the box dimension.

Fractal analysis
− A collection of mathematical procedures used to determine fractal dimension (or any other

fractal characteristic) or set of fractal dimensions (in the case of multifractals) with the
smallest error.

− Nowadays very often used to characterise properties if natural objects
− Method under continuous scientific development

HarFA
− Software equipment to perform fractal and harmonic analysis of digitised images
− Was built up by authors of this contribution
− Is available to be freely download on http://www.fch.vutbr.cz/lectures/imagesci

Description of method
To implement Box-Counting method software called HarFA was built up. Dimension

determined by this method is called Box Dimension DBBW. This method has simple principle:
a square mesh of various sizes 1/ε is laid over the image object. The count of mesh boxes
NBBW (ε) that contain any part of the fractal are counted (e.g. squares which are completely
filled up by the fractal NB and squares which contains just part of fractal NBW are summed
together). The slope of the linear portion of a function ( ) ( ) ( )( )εBBWBBWBWB NfNNN ==+ lnln ,
where )ln(ln)(ln εε BBWBBWBBW DKN += , gives DBBW the fractal (box) dimension. Dimension
DBBW  is referred as classical box dimension and can be easily find in many literature sources.

When modify this method (counting black NB, white NW and partially black squares NBW
separately) three new fractal dimensions DB, DW, DBW can be achieved. DB and DW
characterise fractal properties of black and white plane, while DBW characterises properties of
black&white border. So, we can say that HarFA can compute five independent fractal
dimensions. The most important are dimensions DBW, DBBW, DWBW  (arises by summing
squares NW which are not filled up by the fractal so they remain white and squares which
contains just part of fractal NBW), while DB and DW are accidental, they are meaningful just for
Euclidean objects (line, circle, square etc.). It’s called Linear Regression Analysis.

To determine fractal dimension precisely is necessary to find linear portion of function
( ) ( ) ( )( )εBBWBBWBWB NfNNN ==+ lnln . HarFA dispose of powerful tool to accomplish this goal.

It’s called Single Slope Analysis. Let’s say that we have 100 data points. User of HarFA has
to specify the length of analysed data points segment LDP (e.g. 20). Then Slope Analysis
sequently determines fractal dimension of data 1. - 20. next 2. -21. next 3. - 22...81. - 100.
Finally we obtain the new set of fractal dimensions. If we display them on a graph (each point
is colorized according appropriate correlation coefficient of linear regression) we can easily
find linear portion of original function. It will exhibit by constant part on a new dependency
(there are the same, or almost the same fractal dimensions) and by high correlation (marked
by red or white colour).

But we have no assurance that value of LDP = 20 is appropriate. So the next step is to
perform Slope Analysis for all possible values of LDP (from 3 to Count of Data points). This
tool is called OverAll Slope Analysis. Its result is histogram of fractal dimension count. The
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most probable value of correct fractal dimension is that with the largest count. Slope Analysis
provides easy form of multifractal analysis.

As said earlier, Box-Counting method works with black&white images of fractals. But
medicine or biological images are mostly displayed as grey-level images or even colorized.
So we need to transform these images into black&white. Procedure to accomplish this goal is
called Masking. HarFA provides four colour spaces conversion routines (RGB, HSB/HSV,
HLS and Intensity), which enables user to select desired tint intuitively. Selected tint will be
transformed into black colour and all the others tints will become white. By this way
black&white fractal structure arises.

But sometimes we cannot say which colour of image is important for our purposes. For
these cases there is a tool called Fractal Analysis – Range. Fractal dimension is
automatically determined for all levels of chosen channel of colour information (Red, Green,
Blue, Hue, Saturation, Brightness, Intensity). Resulting fractal dimension is displayed as a
function of masked level of colour information. This dependency is called Fractal Spectrum.
It is a new and not published method of fractal analysis.

The usage of Fractal Analysis in biological or medicine sciences
As mentioned earlier, almost all natural objects can be observed as fractals. The main

„beauty“ of fractals consists in possibility to describe very complex natural phenomena (e.g.
branching of trees or capillaries, fibrous structure of cells, clouds, cerebral cortex etc.) by
small set of parameters. It’s closely to the idea that the nature always prefers the simplest
solution. Even so complex organism as anthill is composed of relatively simplex organisms,
which execute a set of easy instructions. If you want to study fractals you can do it in two
general ways: if you are an experimentalist, you try to calculate fractal dimension of things in
nature and then you try to find the relationship between fractal dimension and some property
of nature. If you are a theorist, you try to calculate fractal dimension of models chosen to
describe experimental situations; if there is no agreement then you try another model. So the
fractal dimension provides the benchmark against which theories are compared with
experiments. HarFA provides the first way of solution. Authors of HarFA have documented
the usage of HarFA in the root system analysis (Institut National de la Recherche
Agronomique, France), the study of variation of shapes of dental crown pattern of voles
(Moscow M.V.Lomonosov State University, Moscow), the analysis of cancer cells images
(Gesellschaft fuer Schwerionenforschung, Germany), the plant cell identification (University
of Florence, Italy) and many other usage within the different kinds of scientific interest
(chemistry, physics, geography, sociology etc.).
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The Fractal Dimension of Grapevine Leaves as a Tool for Ampelographic Research
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Morphological leaf characters and quantitative measurements of anatomical elements of
the leaf, i.e. angles, area, teeth number, petiole length, have been extensively utilised in
ampelographic research (OIV-IBPGR-UPOV charts 1983; Galet 1985). However, the origin
of the grapevine varieties, their heterogeneity and the frequent cases of homonimy and
synonymy, often resulted in doubtful classification. It is thus important to define good shape
measures that can be effectively applied to leaf shapes, so they can be compared and analysed
by meaningful and objective criteria. One approach that researchers have proposed for
describing biological shapes is the fractal based measure of digitally acquired images.

Many pattern of nature are either irregular or
fragmented to such an extreme degree that
Euclidean geometry cannot describe their form.
Thus, fractal geometry based analysis has received
increasing attention as a number of studies have
shown fractal based measures to be useful for
characterising complex biological structures. Fractal
scaling is evident in natural objects from the micro-
scale to the macro-scale, e.g. the human body
contains many structures with fractal characteristics.
In fact, it has been found that non-fractal objects
were the exception, rather than the rule in many
natural systems.

Thus, it seemed interesting to verify the possible
application of fractal analysis to describe grapevine
leaves (Figure 1) belonging to different genotypes
with the hope to add an objective, clarifying
dimension to the excessively convoluted field of ampelography.

The study was carried out with 11 putative Sangiovese-related ecotypes and the registered
clone Sangiovese R 10 as a reference (Table 1). Samples were collected from the grapevine

germplasm collection of the Department of
Horticulture of the University of Florence,
Italy. At the veraison, 50 fully expanded,
healthy leaves, from 15 plants per accession,
located between the 7th and 11th shoot node
from the apex  were selected according to
uniformity of appearance, growth habit and
exposure.

The steps of the box-counting algorithm
were as following. The original grayscale
image was thresholded to create a binary
image, where leaves were represented by
black pixels. An edge detection algorithm
was applied to the binary image to create an
image containing only the edge of the leaf.

Figure 1: An image of grapevine leaf analysed
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Figure 2: Determination of the fractal dimension
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The edge image was divided into a grid of square subimages, or "boxes", of fixed length, d,
and the number of boxes containing part of an edge, N(d), was counted. N(d) was determined
for a range of values of d, and then the log[N(d)] versus log(d) was plotted. The most linear
portion of the curve (shown as open circle in Figure 2) was chosen and linear regression was
performed on that segment of the curve. The box-counting dimension (BCD) was the negative
of the slope of the regression line.

The typical technique for determination of the BCD consists in partitioning the image
space in boxes of size d x d and counting the number N(d) of boxes that contain at least one
part of the shape to be investigated. Several values of d are chosen and the least square fitting
of log[N(d)] x log(d) is used to determine the value of BCD. However, this approximation
will suffer the effects caused by spatial quantization as well as the limited fractality of most
natural objects (such as grapevine leaves). Therefore the curve log[N(d)] x log(d) will exhibit
two distinct regions (Figure 2). The error is minimized calculating D in the region where the
curve is most linear. Such guidelines were applied in the present research  to the grapevine
leaves to obtain their fractal dimensions.

Table 1: Fractal dimension of homogeneous sets of leaves in different Sangiovese-related ecotypes.

Genotype Mean S. E. Minimum Maximum
Prugnolo gentile 1.301 0.001 1.283 1.310
Brunellone 1.294 0.001 1.271 1.316
Brunelletto 1.230 0.004 1.202 1.274
Prugnolo acerbo 1.457 0.003 1.415 1.472
Prugnolo dolce 1.448 0.001 1.426 1.462
Prugnolo medio 1.468 0.001 1.444 1.482
Casentino 1.204 0.008 1.136 1.294
Chiantino 1.240 0.003 1.216 1.298
Morellino 1.278 0.001 1.262 1.315
Morellino di Scansano 1.246 0.004 1.225 1.302
Piccolo precoce 1.499 0.002 1.471 1.512
Sangiovese R 10 1.372 0.001 1.353 1.389

The fractal dimensions of a homogeneous sample of leaves from different Sangiovese-
related genotypes are listed in Table 1. The mean values of  BCD ranged from 1.204 for
Casentino to 1.499 for Piccolo precoce, showing a rather ample interval.

In spite of plant variability, the fractal dimension can be found quite accurately with a
small sample size. The average standard error of D for 12 genotypes shown in Table 1, for
example, was only 0.19 % (n = 50), that is much less than the standard error that occurs using
the traditional ampelographic parameters.

A fundamental question on the applicability of fractal analysis to vine leaves is if vine
leaves are genuine self-similar objects. Results presented here show that leaves are not truly
fractal because they do not show the highly hierarchical structure characteristic of artificial
fractal object. Nevertheless, the BCD gives an effective dimension that can be used to
measure the complexity of highly complex structures such as vine leaves. Complex objects
may show a power-law property over a limited range of scales and this property may be
captured using fractal techniques. Similar discussions were met in the application of fractal
analysis to other not truly fractal objects as the human trabecular bone or the neurons.
Consequently, this study rather than proposing that vine leaves are fractal, emphasizes the
usefulness of fractal analysis in ampelography.
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The methods for an image analysis are used in biology and medicine more often. This is
due to development of image recording equipment (digital cameras, scanners), more efficient
personal computers and their peripheries (A/D converters, TV cards, Video CD, DVD) and
special software for image data processing.

The harmonic and fractal analysis of the image or its colour separations belongs to the
basic methods for the image analysis. This analysis can be performed by various software
equipment, which is commonly available [1], [2], [3]. These software are developed for
special purposes so that are not fully suitable for many applications.

At the Faculty of chemistry was developed software HarFA [4], which attempts to solve
the problems of image analysis more complex, although the main area of its application is
focused on fractal analysis. Just this method was used for analysis of microbiological
specimens for the determination of number of yeast cells
in digital image (Figure 1).

The image was taken by recording equipment, which
consists of optical microscope SM-6, digital camera
SONY and PC.

The microscope magnification, resolution of digital
camera gives the connection between image size  and
studied sample size (10 µm per 48 pixels).

The number of cells was determined by following
expectations:
1. the cells are of round shape,
2. the cells are similar in size,
3. the cells differs form background by colour.

The procedure of cell size determination and its number d
1. By means of proper colour separation (RGB channel, in

masking procedure is made for colour adjustment – whi
background.

2. By means of fractal analysis the fractal dimension and f
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where mε is network size, with maximum of fractal dimension. For smaller values of ε
)( mεε <  will be a border line formed by pixels of image discrete (a fractal dimension of inter-

face will decrease), for )( mεε >  will be a border line broad (it causes the decreasing of fractal
dimension again).

In both cases it is displayed by decreasing the number of  investigated cells x, or by
increasing  their radius (Figure 3), respectively. From this figure is possible to determine the
number of cells stated by fractal analysis (x = 100) and their mean radius (r = 29 pixels).

Comparing these results with values, which are easy to estimate from figure 2 (x ≈ 85) we
can see, that the error of determination of number of cells in this case is smaller than 15 %.
The higher accuracy is achievable by optimal choice of cell size in image (it can be easy
modified by change of optical magnification) and by optimal cell count in image (can be
changed by dilution of cell culture).

The most proper parameters (cell size, number of cells in image) can be established by
their  evaluation in two ideal cases:
1. for different number N of round shaped cells with the same radius r,
2. for fixed number N of round shaped cells with the various radius r.

It was found, that the optimal size of cells (the mean radius r) for the image analysis is 35
pixels, the optimal cell number is approx. 50. From the analysed structure can be seen that
parameters of analysed image structure are at the edge of suggested conditions. The further
information will be presented on the poster.

Conclusion
It is evident that the cell count d

about 15 %. This difference is cau
(it should be removed the thermal 
of illumination non-homogeneity, 
cells. From these results we can cla
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Fractal Dimension Analysis of Hollow-Cone Darkfield Images 
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Abstract. The fractal dimension is used as a guide to setting the threshold for 
converting darkfield images into binary images. This can be used to support the existence 
of a preferred orientation in a thin film (Ag), or to get quantitative information about the 
phase content of multi-phase films (Ni-Ni3P). 

 
Summary.  
Setting the threshold when converting a darkfield image to a binary one, to get 

quantitative information about orientation or phase content, can be tricky. It depends on 
the operators intuition as to when he or she feels the binary image is a good 
representation of the micrograph, and when comparing a series of images, can often lead 
to erroneous trends. 

Box counting is overlaying a grid of boxes of side s and counting the number of boxes 
that contain part of the image N(s). The fractal dimension D is defined as 

 N(s) = s-D. (1) 

D governs the rate at which N changes with s. 
One can estimate by visual inspection of an image some bounds on the expected form 

of the log (N(s)) vs. log (1/s) curve from a box counting routine. The threshold may then 
be set to meet those expectations. The operator may then compare the resulting binary 
image to the darkfield one, and if it’s a good representation visually, then there is a 
supporting mathematical basis for it. 

There are several regimes for the fractal dimension D. Consider an image that is a 
series of parallel lines of length L and spacing d, and width of line w. L >> d >> w. As 
the box size s falls, the dimensionality changes,  

 1. D = 0 for s>>L (2) 

 2. D → 2 for d < s < L (3) 

 3. D→ 1 for w < s < d  ( D ~ 0 if these are particles of diameter w)  (4) 

 4. D → 2 for s < w.  (5) 

 5. D =2 for s<<w (6) 

That example illustrates that the D computed from the slope of log (N(s)) vs. log (1/s) 
depends on magnification, density, feature size, and the size of the "measuring stick".  

With this kind of visualization tool, consider the hollow cone darkfield images. They 
are an ideal case, as they are taken at the same magnification, are about the same size, 
and have similar illumination conditions. In the upper right hand corner of the 220 
darkfield collage is a feature that looks like a handprint. The "palm" part of the print is 45 
pixels wide. Our boxes have s=2,3…17 pixels per side.  

I assume that if an area shows any contrast and is not completely black, its coming 
from grains oriented perpendicular to the hkl of whatever ring is being examined. Note all 
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the grains in those images are nearly space filling and connected so D>1. Most of the 
time s≤w where w is the feature size so D→2 as s<<w. Also s≤d where d is the spacing 
between feature edges. As s decreases, the number of boxes of side s, N(s), that contain a 
portion of the image should increase almost as Adiffract/s2, but slightly slower since some 
boxes won't be counted due to the spacing between unconnected grains, so D must be 
slightly less than 2. In addition, s is in pixels and does not range over many orders, so the 
slope D of log (N(s)) vs. log (1/s) will stay less than 2 and not vary too much. 

This reasoning suggests setting the threshold until log (N(s)) vs. log (1/s) has almost 
the same slope for small boxes as it does for big boxes, and the slope D should be a bit 
less than two, but not too far away. 

Fractal dimensions were computed with threshold settings for the 220, 111, 200, 311 
hollow cone darkfield images for an Ag film on Si3N4, Table 1. By threshold = 210 the 
small and large s fractal dimensions agreed more closely. 

Table 1. Fractal dimensions with threshold setting. 

Thresh = 210 220 111 200 311 
s = 2-3 1.614242 1.702474 1.654951 1.667205 
s = 13-17 1.507534 1.705807 1.766551 1.754871 
Thresh = 188 220 111 200 311 
s = 2-3 1.608247 1.602977 1.582639 1.547907 
s = 13-17 1.313757 1.511971 1.436904 1.525707 
Thresh = 150 220 111 200 311 
s = 2-3 1.568375 1.52711 1.48587 1.419023 
s = 13-17 0.92678 1.110822 1.163722 1.046953 
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The images and graphs follow on the next pages. Note how by threshold=188 that the 
220 diffracting grains log (N(s)) vs. log (1/s) curves lay significantly beneath those of 
111, 200, 311. This means that the total area of the 220 diffracting grains for all boxes is 
smaller than the others. If the film is 220 oriented, the number of grains capable of 
diffracting 220 should be reduced, and those capable of 111, 200, 311 reflections are 
increased. Ergo, this analysis supports 220 oriented Ag resulting from annealing at 300 
oC of the as deposited film.  Note also the rapid rise of the 311 log (N(s)) vs. log (1/s) 
curve with thresholding. Lastly, I thought the threshold=210 was a pretty good binary 
representation of the overall shape of the diffracting grains. Conclusions follow pics. 
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220 hollow cone and threshold=150, 188,210. See "handprint" 45 pixels wide. 

 
Compare the "dark" non-diffracting grains in the original image to the white areas of 

the binary ones. The shape of the dark areas is captured more accurately in the highest 
threshold setting. 
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111 hollow cone and threshold=150, 188, 210. 
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200 hollow cone and threshold=150, 188, 210. 
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311 hollow cone and threshold=150, 188, 210. 
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Conclusions. 
•  D~1.6-1.7 for all the grains diffracting in the hollow cone darkfield images.  
•  The threshold=210 setting may be just a bit shy of the optimal setting as there is still 

some structure in the 220 diffracting grains. 
•  Setting the threshold to achieve a fairly constant D in the range estimated from visual 

inspection of the image removes some of the operator feel from the process, and 
allows some data to be collected without manual circling of grains or outlining. 

•  The analysis supports a 220 oriented film. 
•  Analysis of a bi-crystal series of images using the same assumptions would be 

helpful. The assumptions that help determine the regime of D which may change with 
microstructure. 

•  Hollow cone and the fractal analysis may be helpful in imaging and gaining 
quantitative information about Ni3P segregating in grain boundaries of plated Ni films 
on heating.  

Lastly, I found a much more sophisticated program call HarFA (harmonic fractal 
analysis) which creates some beautiful data, is very fast, and allows a larger range of 
boxes to be analyzed. It calculates the fractal dimension spectrum as well, so you can see 
structure in the D(s) that corresponds to the particle size distribution and distribution of 
spacings between particle edges. I will provide the analysis of the hollow cone images 
with this program shortly. 
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The methods of image analysis are being used in biology and medicine more often. This is due to 

the development of image recording equipment (digital cameras, scanners), more efficient personal 
computers and their peripheries (A/D converters, TV cards, Video CD, DVD) and special software for 
image data processing. 

The harmonic and fractal analysis of the image or its color separations belongs to the basic methods 
for the image analysis. This procedure can be performed by various software tools, which are 
commonly available [1], [2], [3]. However, this software is developed for special purposes, and 
therefore it is not applicable generally.  

For the past few years, the application HarFA (Harmonic and Fractal Image Analyser) [4] has been 
developed at the Faculty of Chemistry of BUT. This software enables the user to make various 
correction of the captured image, to apply filters, color separations and both harmonic and fractal 
analysis. It has been showed, that this software tool can be used for the characterization of the images 
of microscopic specimen. If we apply the fundamentals of fractal mathematics on the image of cellular 
structure complying with certain criteria (spherical shape of the cells, similarity of sizes and contrast 
background – figure 1), we can determine both their number and size. 
If we cover the analyzed image by a virtual sampling mesh with the size of one box ε × ε pixels, we 
can formulate the following relations  

 ( ) ( ) ( ) ( ) ,, BBWBW
BBWBWBBBWBWBW

DD KNNNKN −− =+== εεεεεε   
where NB(ε) stands for the number of totally black and NBW(ε) stands for the number of partially black 
boxes of that sampling mesh. DBW (DBBW) is so called fractal dimension and  KBW (KBBW) so called 
fractal measure. Using these constants, it is possible to determine the number of cells x and their 
radius r 
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where εm is the mesh size corresponding to the maximum of fractal dimension. For smaller values of ε 
(ε < εm) will be a borderline formed by pixels of image discrete (a fractal dimension of interface will 
decrease), for (ε > εm) will be a border line broad (it causes the decreasing of fractal dimension again). 
From the extremes of the curves at figure 2, it is possible to determine the number of cells and their 
radius. 

 
 
Figure 1: Model cellular structure; 
100 cells, radius 38 pixels 
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ure 2: The determination of number of cells x and their radius r 
 100, r = 38 pixels) 
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The advances in digital image recording techniques and especially the price reductions have made 

these technologies suitable and available for various techniques of image analysis. These digital 
techniques are now applicable in those segments of scientific research, where manual processes of 
image evaluation prevailed until nowadays. 

There exist many ways of biological specimen image analysis and they are readily available as 
complete commercial software products. Anyway, the image analysis is not only applicable to 
biological and microbiological research. Software application HarFA [4] has been developed at our 
faculty. Originally, it has been designed for the image analysis of print patterns. This software enables 
the user to make various correction of the captured image, to apply filters, colour separations and both 
harmonic and fractal analysis. At the same time, it can be used for the image analysis of biological 
specimens as well.  

The harmonic and fractal analysis of the image or its colour separations belongs to the basic 
methods for the image analysis. This analysis can be performed by various software equipment, which 
is commonly available [1], [2], [3]. However, this software is developed for special purposes, and 
therefore it is not applicable generally. Just this method was used for analysis of microbiological 
specimens for the determination of diameter distribution of yeast cells in digital image (figure 1). 

It has been shown that under certain circumstances, HarFA can be used to analyse the image of a 
microscopic specimen. The circumstances are: 

•  cells have to be spherical or ellipsoidal, 
•  cells have to be similar in size, 
•  cells have to be coloured different from the background. 
Under these conditions it is possible to determine the number of cells in the image, their size and 

the size distribution. 
The image was taken by recording equipment, 

which consists of optical microscope SM-6, 
digital camera SONY and PC. The microscope 
magnification, resolution of digital camera gives 
the connection between image size and studied 
sample size (100 µm per 514 pixels). 

According to the experience from previous 
work we tried to widen the field of application of 
this method. During the previous work, it was 
possible to determine the number and size of cells 
fairly correctly. The samples contained suitable 
estimated number of cells (100) of appropriate 
size (35 pixels). When compared with the 

standard manual method of counting by Bürker 
box, the error was less than 10 %. 

During the analysis of captured image, it is 
necessary to respect this optimal number and the 
deviation from correct values determined 
manually. Our proposed analytical process 
consists of the following steps:  
1. It is necessary to calculate the calibration 

curve of real number of cells (85 cells were 
used) versus the number determined by fractal 
analysis for different distribution. The 
deviations are caused by just by the size 
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distribution. This is true also for the deviations between the real radius and the radius determined 
by fractal analysis (figure 1 and 2). 

The image analysis is based on:  
2. The capturing of the digital image of the specimen (figure 

3). The image must not contain larger number of cells the 
number for which the calibration curve was calculated (85). 
Naturally, the cells have to be easily recognisable.  

3. The captured image is cropped so that it contains 
approximately the number of cells for which the calibration 
curve was calculated  (85 cells,  figure 1). 

4. The image is Gaussian-blurred in order to remove noise, 
which deteriorates the results of masking. 

5. The determination of the optimal colour level for masking. 
After masking, the image consists only of two colours, so 
the cells are well separated from the background (figure 3). 

6. The fractal analysis of the masked image, by which the 
approximate average radius of the cell is determined. 

7. The image is then resampled, so that the approximate cell 
radius is equal to the radius for which the calibration curve 
was calculated (35 pixels, figure 2). 

8. The fractal analysis, by which the number of cells and the 
average radius are determined (figure 4). These values are 
distorted because of the cell size distribution. 

9. The determination of cell size variation from the 
calibration curve of real number of cells versus the number 
determined by fractal analysis (figure 1). 

10. The determination of real average cell radius from the calibration curve of percentual deviation of 
radius for the variation determined in the previous step (resampled image). 

11. The determination of real average radius from the factor of resampling. The results of this analysis 
are the standard deviation and the average cell 
radius for the selected cropped image area.  

 
 
The analysed specimen contained 81 cells 

whose average radius was 3.1 µm and the 
standard deviation 0.8 µm as determined by 
standard practice [2]. The following values were 
determined by the algorithm described above: 
average radius was 3.3 µm and the standard 
deviation 0.8 µm. By the evaluation of series of 
specimen it was determined, that the error of 
average radius and of standard deviation when 
compared with standard practice does not exceed 
10%, even when the cells are not ideally 
spherical. 
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Figure 4: The determination of number and radius 
of  cells 

Figure 3: An image of specimen blurred 
by microscope (top), the same image 
after processing 
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Fractal Geometry of Modern Art
George Johnson and James Croft

Nottingham University 3rd year undergraduates
ppyugpj@nottingham.ac.uk, ppyujrc@nottingham.ac.uk

Can science be used to understand modern art?
This question triggers reservations from both scientists and artists. However, for the abstract

paintings produced by Jackson Pollock in the late 1940s, science proves to be an important tool for
determining their fundamental content. Pollock dripped paint from a can on to vast canvases rolled out
across the floor of his barn. The Pollock's patterns were found to be chaotic trajectories, i.e. they have
fractal geometry.

The present project is about designing a system to generate chaotic trajectories where the degree of
chaos can be tuned. The system consists of a pendulum which records its motion by dripping an
identical paint trajectory on to a horizontal canvas positioned below. When left to swing on its own,
the pendulum follows a predictable, non-chaotic motion. However, by knocking the pendulum at a
frequency slightly different from the one at which it naturally swings, the system becomes a kicked
oscillator. By tuning the kick, which can be applied using, for example, electromagnetic driving coils,
chaotic motion and Pollock-like patterns could be generated.

An initial system using fixed magnets both below the canvas and attached to the pendulum was set
up. Some pictures were produced.

The bellow picture (fig. 2) was produced when the pendulum was released from the lower right
corner of the canvas and allowed to swing until it came to rest.

Figure 1: Jackson Pollock – lavender mist
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This is a preliminary result and we hope to produce more complex works as we hone the technique.
Having experimented with the demo version of HarFA we wish to use the full version to analyse

our paintings and compare fractal dimensions calculated for Jackson Pollock paintings and our own.
The project is due for submission in Jan 2003.

Contact details:
George Johnson ppyugpj@nottingham.ac.uk
James Croft ppyujrc@nottingham.ac.uk

Figure 2
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The Fractal approach as a tool to understand asymptomatic Brain hyperintense MRI
Signals in Divers
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1 DAN Europe Research Division  2 Université Libre de Bruxelles I.S.E.P.K. Bruxelles, Belgium. 3 Center for
Hyperbaric Oxygen Therapy, Military Hospital Queen Astrid, Brussels, Belgium; 4 Department of General
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Longchamps (Brussels), Belgium
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1. Introduction
Since 1989 the first publication that spoke about the possible correlation between the presence of a

Patent Foramen Ovale and the occurrence of decompression sickness (Moon et al., 1989) there has
been no respite in the quest about the possibility of such a relationship. Since 1996 the research
department of DAN Europe set out to investigate and respond to a serious concern at the time as a
result of this alarming article: is there really an increased risk of DCS for a diver who has PFO?
(Wilmshurst et al., 1986; Wilmshurst et al., 1995; Knauth et al., 1997).

The decompression bubbles are found primarily in the veins; in the heart they are mainly found in
the superior and inferior vena cava. Frequently, divers regard PFO as a hole that allows the continual
passage between the right atrium and the left - the arterial part of the heart where we don’t want to see
bubbles (see the illustration). The flow coming from superior vena cava has to pass over a fold,

providently given by Nature before touching the PFO (or the Fossa
Ovalis).

This causes a sudden increase in the rate of the flow, which meets the
flow coming from the inferior vena cava and thus turbulence is caused
which causes the bubbles to be TAKEN AWAY from the interatrial
septum. Therefore if we understand correctly, the bubbles would not cross
the Foramen Ovale in natural conditions. But then why the injections of
bubbles that are made during the transesophageal echocardiogram to
measure the PFO, since they pass in the left atrium?

The reason is that respiratory movements are made to reverse the
intracardiac flow caused by variations in the intrathoracic pressure.

2. Spots on the brain and PFO
A number of years ago some studies declared the

relationship between PFO and cerebral  “LESIONS”
(Reul et al., 1995) (Knauth et al., 1997).  Since then
others have found that there was not a direct
relationship(Gerriets et al., 2000; Saary & Gray, 2001).
In all of these studies, however, we encounter the same
population bias.  DAN therefore asked two groups of
people to sit a test of nuclear magnetic cerebral
resonance imaging; 50 were divers and 50 were non-
divers. All of the participants had to be under 41 years
old because according to studies spontaneous lesions
cerebral can occur after 45 years. The distinguishing
feature was that this population was randomised; we asked 400 volunteers: 200 divers and 20 non-
divers. We asked the divers to declare that they had never suffered from DCS. However, often certain
accidents and cerebral incidences in particular were not declared because of benign or brief symptoms.

AXIAL FLA
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How many divers had have felt a little dazed after a
dive ...which goes away after a few minutes ... a case
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of badly equalised ears or a transient cerebral bubble?
To avoid this situation of poor choice of population

we took the case of 1 diver in 4.
Then we made a comparison between the numbers

and the size of the “spots” found among the divers and
those found among the divers and non-divers.

A little more spots were detected among the divers
but there was not significantly more. This is contrary to
what some authors say with populations that are not
randomised and without a control group. Also, to
ensure accuracy in the results a particular imaging
filter, which allows a reliable diagnosis of the FLAIR

equence to be made, was used. Another pitfall that was present was the possibility of finding
aturally lacunar zones known as the Wirchow-Robin spaces and diagnosing them as “LESIONS”.

The use of fractal analysis is a known technique in clinical science and particularly in pathology
Rossitti, 1995; Sisodiya et al., 1995; Cross, 1997a; Caldwell et al., 1998; Handels et al., 1998; Luzi
t al., 1999) , the interesting predictive opportunity of fractal analysis in breast cancer (Byng et al.,
996a; Byng et al., 1996b; Velanovich, 1998; Heymans et al., 1999; Zheng & Chan, 2001) or
steoporosis (Feltrin et al., 2001; Dougherty & Henebry, 2002; Lespessailles et al., 2002; Libouban et
l., 2002) is related in pattern differentiation on the medical diagnostic images.

The important possibility of diagnosis before the rise of real
objective or clinical symptom is a paramount of interest in the
medical field. The precise use of fractal analysis in neuroimaging is
a moving field with a very promising future. The study of with
matter hyperintense signal has been analyzed with the fractal
approach in geriatric patients to see if some links can be considered
with the white matter hyperintense “spots” and the epileptic seizures
(Takahashi et al., 2001) .

In the young patient, to our knowledge, nothing has been done yet
in order to investigate some relations between the significant
difference of the fractal dimension of some hyperintense white
matter spots in the brain and their spatial distribution.

We tried to use the self-similarity concept of the fractals as this has already been used to mark
ifferences between architectural (Cross, 1997b; Chen & Chen, 1998; Behar, 2001) or even cancerous
tructures (Peiss et al., 1996).

Our aim was to verify if the fractal dimension of some
erebral vascularization images was compatible with the
ractal Dimension of the a symptomatic brain Spots in
ivers who never experienced a decompression disease nor
FO related headache (Anzola et al., 1999; Wahl et al.,
001; Sztajzel et al., 2002). All these criteria were
ncluded in the population selection criteria.

To calculate the fractal dimension of the images we
sed the Harfa 4.0 program applying the box counting
ethod after appropriated filtering and thresholding and

ccepting the final result as the fractal dimension the better
ccurrence of the slope described in the slope analysis
ption.

Asymptomatic Spot

Cerebral artery

Multiple Sclerosis
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3. Methods
Our population was a group of 50 healthy divers (scuba divers) not older then 40 yr. This

population has been randomized from a larger population of 200 voluntary divers, which has been
drastically selected by very strict criteria: less than 41 yr old; at least 200 dives; no history of
cardiovascular or decompression disease and other conditions such as multiple sclerosis or headache
brain lesions.

The randomization has been performed to exclude some population bias that can occur in such a
voluntary based selection process.

We tried to compare the fractal dimension of some clearly non-vascular spots in the white cerebral
matter and the dimension of some other spots from other origin.

The purpose was to determine weather the “lesion like” spots could be associated with the
circulating arterial bubbles coming up to the brain from the patent cardiac Foramen Ovale or just
another unexplained or non diving dependent mechanism.

Furthermore to investigate the potential
difference of the spatial distribution
between the fractal dimension ischemic
lesions of the cerebral vascular accident
and the haemorragic ones we separated
them and controlled exclusively the
clearly ischemic ones.

If the “lesions like asymptomatic spots”
were from vascular origin, their spatial
distribution should be compatible either
with the cerebral vascular images or the
ischaemic lesions fractal dimension.

4. Results
We could find in our population of 50

asymptomatic divers (randomized out of
200; 1 excluded for MS) 4 lesion like
white matter hyperintense spots. Then we
compare the fractal dimensions of 18
brain angiographies; 9 images of Multiple Sclerosis; 5 Ischemic vascular brain lesions images. (see
graph.)

The Anova statistical test was performed after testing the normality of the population and the
posttest performed was the Neuman-Keuls discriminate test.

The differences between all the vascular depending images fractal dimension and the “diver’s
sports” were highly significant (p<0.001), conversely the differences between the vascular bed spatial
distribution and the ischemic lesions images was not statistically different. This allows us to be sure
that the fractal dimension is a good tool to be used in our experimental paradigm.

The non-vascular brain lesion fractal dimension was not statistically different of the “diver’s spots”
one, thus our assumption was to postulate that those spots are not clearly to be defined likes vascular
related ischemic lesions as generally admitted.

5. Conclusions
The fractal analysis of cerebral images is good tools to determine weather the spatial distribution is

compatible with the vascular bed and allow us to postulate another non vascular mechanism.
Moreover the link between the patency of the Foramen Ovale of the heart and the diver’s “brain spots”
seem not to be as clear as it has been postulated. (Knauth et al., 1997; Schwerzmann & Seiler, 2001)
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Fractal geometry for the characterisation of urban-related states: Greater Montreal Case

Catherine Morency and Robert Chapleau (rchapleau@polymtl.ca)
École Polytechnique de Montréal, Civil Engineering Department, CANADA

Transportation planning
www.transport.polymtl.ca

This paper summarises a brief experimentation of fractal geometry applied to the characterisation of
urban-related states in the Greater Montreal Area (GMA).  Research in the field of travel behaviour
and urban modelling can be classified according to four basic axes of concern: the measure of urban
mobility, the assessment of urban land use, the monitoring of demographic and economic forces and
the appraisal of the role of the transportation networks. Fractal measures, used in conjunction with
other measures, could lead to renewed description of several issues related to those axes of concern.
As an introduction, methods for computing fractal measures were experimented in order to assist in
the description of the land and transportation network coverage, as well as in the study of the
dynamics of settlements over the area.

1. Methods for computing fractal dimensions
Two methods were used in order to estimate the fractal dimension of the urban states: the box-

counting method as implemented in Harfa and the mass-radius method computed within a GIS
environment. Results from both methods are presented.

1.1. Box-counting method
This method computes the number of cells required to entirely cover an object, with grids of cells of

varying size. Practically, this is performed by superimposing regular grids over an object and by
counting the number of occupied cells. The logarithm of N(r), the number of occupied cells, versus the
logarithm of 1/r, where r is the size of one cell, gives a line whose gradient corresponds to the box
dimension. A refinement of this method is implemented in Harfa where a distinction between
completely occupied cells and partially occupied cells is introduced. This allows the computation of
several box dimensions by plotting the logarithm of combination of cells: completely occupied,
completely non-occupied, partially-occupied.

Box-counting method relies on digitized representations of the objects of interest and will be
affected by their resolution. It is also sensible to the orientation of the grid as well as to its initial
placement. In addition, treatment of phenomenon involving intensities (number of dwellings per
enumeration areas) will require special processing such as the use of graduated symbols arbitrarily
specified.

1.2. Mass-radius method
The mass dimension defines the relationship between the area located within a certain radius and

the size of this radius (or box). This is performed for various radiuses as well as from various points of
origin. The mass dimension can be estimated from the log-log plot of the area as a function of the
radius.

In our case, the center of mass of the territory is computed and serves as origin point. The area
located within a growing radius (1 to 62 km) is estimated using GIS capabilities. Moreover, urban
phenomena such as population dispersion or transit share are often examined as a function of distance
to CBD (Central Business District). In this view, mass dimension is also computed in reference to this
point.

2. Demonstration
Fractal geometry will be experimented to characterise the morphology of the Greater Montreal Area

(5 390 sq. km.) and of the spatial extent of the transportation network (1 927 sq. km.). Data from the
1996 Canadian census will also be used to illustrate the dynamics of settlements construction over the
territory. Those data are disseminated at the enumeration area (EA) level (app. 250 households/EA and
more than 4 500 EA in the GMA) and construction information is available for six periods: before
1946, 1946-1960, 1961-1970, 1971-1980, 1981-1990 and 1991-1996.

mailto:rchapleau@polymtl.ca
http://www.transport.polymtl.ca/
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2.1. The Greater Montreal Area
Box counting dimension was computed over a black and white

representation of the area (948 X 891 pixels), hence no threshold operation
was necessary. Dimension obtained while considering both completely and
partially occupied cells is 1.8583.

Mass dimension was computed using both GIS and spreadsheet
functions. Results from considered origins, mass centre and central
business district, are presented in Figure 1.

Mass Fractal Dimensions - Greater Montreal Area

Mass Center:
y = 1.8493x + 1.3667

R2 = 0.9913
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Figure 1 - Mass dimensions for Greater Montreal Area - from mass centre and central business
district

The mass dimension computed from the Mass Centre, 1.8493, approaches the one measured with
the box-counting method. These plot however reveals a non-linear relation between the area and the
radius, especially over 30 kilometres. The fluctuation of the mass dimension can be appreciated with
the rough estimation of the slope with successive data pairs; it severely drops over 30 kilometres, the
radius of gyration.

The two following figures illustrate the superimposition of radiuses from mass centre and CBD.

!

Figure 2 - 1 kilometre radius from Mass
Center

")

Figure 3 - 1 kilometre radius from CBD



C. Morency, R. Chapleau/ HarFA - Harmonic and Fractal Image Analysis (2003), pp. 30 - 34

HarFA e-journal http://www.fch.vutbr.cz/lectures/imagesci

32

2.2. The transportation network
A similar approach was used in order to estimate the fractal dimension of the surface covered by the

transportation network. A 100 metres buffer applied over the entire network approximates this surface.
The dimension and resolution of the digitised representation were maintained identical to the one used
for GMA estimations (and will be preserved for the study of settlements construction).

The box-counting dimension obtained while considering both
completely and partially occupied cells is 1.7392, which appears
consistent with the previous results.

The computation of mass dimensions with the selected origins is
synthesised in Figure 4. Again, the plot reveals a non-linear
relation between the area and the radius that is less adequately
modelled by a linear regression. The curve representing the
fluctuation of the mass dimension is declining, affected by the
dedensification of the network towards the suburbs.

Mass Fractal Dimensions - Transportation network
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Figure 4 – Mass dimensions for the Transportation Network - from mass center and central
business district

2.3. The dynamics of settlements patterns
Our final experimentation deals with dwellings’ construction data from the 1996 Canadian census.

Information are available for six periods of construction (number of dwellings constructed in every
period) and are disseminated at the enumeration area (EA) level, one EA containing data for
approximately 250 households. Since data are aggregated and spatially located according to centroids
(app. 4500 to cover the GMA), it was decided to use graduated symbols for the consideration of
intensities, that is the number of dwellings constructed at a specified period at every location. This
processing, arbitrary for the moment, allowed the estimation of box-counting dimensions at six
different stages of residential development. The results are summarised below.
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Figure 5 - Evolution of the box-counting dimension of residential construction over the GMA

3. Conclusion
At this stage, only computation feasibility was experimented over urban-related data. Interpretation

of the fractal dimensions as well as demonstration of relevance/irrelevance for the modelling of
transport modelling issues needs further experimentation.
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Abstract
Fractal dimension of C-6 rat glioma tumours growing in microwave field generated by signal

simulation of the Global System for Mobile communications (GSM) with frequency 960 MHz was
found significantly enhanced as compared with field free tumours growing at different temperatures.

1. Introduction
The Mandelbrot answer to Richardson question: “How long is the coastline of Britain ?” was

concept of fractals [1].  Similar answer may be given to the question: “How long is the borderline of
tumour ?”, as has been found in the works of  Sedivy,  Landini and  Rippin, Waliszewski, and several
others [2-4]. In all these studies was emphasized the usefulness of fractal parameters in tumour
pathology. The fractal dimension of a tumour could be understood as a measure of irregularity, which
serves as an additional morphometric parameter in surgical pathology and is specific for a given
tumour. Many epidemiological studies have implicated environmental and residential exposure to
electromagnetic field as a possible factor in the development of certain human cancers [5-7].
Extremely low frequency electromagnetic radiation has been reported to affect a wide range of basic
cellular functions, including cell proliferation [8] gene transcription and expression [9] on transport
[10], protein kinase C activation [11] and cell morphology [12]. Although the detailed mechanism of
the influence of a weak electromagnetic field on cellular processes is still unknown [13],
electrostimulation of the proliferation of  Saccharomyces cerevisiae [14] or Pseudomonas stutzeri
[15], in a weak low frequency field have already direct biotechnological implications.

Recently media attention has focused on claims for damages due to alleged brain tumours, in
particular glioblastomas, caused by mobile phone usage. The aim of the present communication is to
study the influence of a weak AC magnetic field on rat C6 glioma cell line growing in monolayer.
Glioblastomas are high-grade malignant neuroepithelial tumours having a median survival time of 8
months. These tumours have such a grim outcome in part due to their rapid volumetric growth, but
also because the tumour has already grossly invaded the surrounding brain tissue long before it can be
diagnosed.

As has been recently shown [16] this brain tumour model has super-rough fractal contour and
therefore tumour growth may be more susceptible to external influences than ordinary three-
dimensional tumours. Moreover tumour interface speed growth is in this two-dimensional case linear
and not exponential [17,18] and may be characterized by one-parameter. During tumour growth and
evolution, mutations continue and cells behave differently from the normal cells of the tissue where
they appeared. In advanced stages of cancer, cells start to detach from the tumour and invade the blood
stream or lymphatic system. They can be carried to other body parts producing new metastatic
tumours. The detachment and invasion of other tissues result in part from the incorrect expression of
adhesion molecules on the cell surface for the mutated genome. This process causes a decrease in
cellular adhesion between cells with additional consequences such as an increase in mobility of the
cells on the surface  of the tumour. As a result, the boundaries of the tumour become very irregular.
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This change on tumour morphology, associated with additional information, help physicians to
diagnose cancer stage of development. Recent studies indicate that the fractal dimension of tumours is
useful as an indicative of malignancy.

2. Material and methods

2.1. Exposure system
The microwave field was generated by signal simulation of the Global System for Mobile

communications (GSM), a 960 MHz carrier amplitude modulated with a 217 Hz square pulse of duty
cycle 12 %. The experimental apparatus consisted of a pair of horizontal rectangular (25cm x 15cm)
coils, maintained in a pseudo-Helmholtz configuration (distance between the coils was 15cm) and
powered by AC generator. Field intensities were measured using a Hall effect probe magnetometer
(FW Bell, Model 9640). The cell cultures were placed in the middle part between the coils and were
exposed to magnetic field and cells were allowed to grow for another 24 hours in field free box. The
whole system was placed in at thermostatic box kept at 37.0 ± 0.1 °C. The temperature of the culture
medium was monitored by using a nonabsorbing fluoroptic thermometry system (Luxtron 3000,
Mountain View, CA, USA) and no relevant heating of medium was observed during the experiments.

2.2. Cell culture
104 dissociated C6 glioblastoma cells, cloned originally from rat glioma [19] and obtained from The

American Type Culture Collection (Rockville, MD, USA), were plated in a 5 µl of Dulbecco's
modified Eagle's medium containing 10 % (v/v) horse serum and 2.5 % (v/v) fetal-calf serum on 35
mm Petri dishes. After cells attachment 2 µl of medium was added to growing culture, which allowed
tumours to grow mainly on plate surface. In a regular time intervals control and exposed tumours were
photographed under the inverted microscope with a coupled digital photocamera (Figure 1).

Fig. 1 Experimental setup for the study of two-dimensional tumour growth.
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2.3. Determination of fractal dimension
The photographs were analyzed in a computer and tumour images were analyzed using program

HarFA [20] based on the improved box counting method where binary images of tumours were
covered with different grids (box length ε), and the number of boxes N(ε) required to cover the
structures of the nuclei was recorded. If an object is fractal, N(ε) increases according to the relation

εε DC)N( =

where D is fractal dimension and C is constant. From this equation the fractal dimension can be
obtained as

)}log(/)](log[{lim
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→
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2.4. Statistical analysis
Statistical evaluation of the exponential data was performed with two-tailed Student's t-test with

p<0.05 as the minimum level of significance.

3. Results and discussion
Fractal dimensions of tumour boundaries are shown in Figure 2. For the comparison we have

determined fractal dimension of tumours growing at 37 °C (control), tumours growing in microwave
field (GSM) and tumours growing at temperature 40 °C (heat).
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Fig. 2. Fractal dimensions of tumours boundaries at different conditions.

As is clearly seen the fractal dimension of  “GSM” tumours is significantly higher than in the other
two groups, which demonstrate for the first time the new effect mediated by mobile phones. It should
be stressed that the intensity of used GSM microwave radiation is about 50 fold higher than the
intensity which is generated by mobile phones during their common use. Nevertheless these results
indicates possible role of GSM radiation not in initiation but in acceleration of brain tumour growth
and metastasing activity, which is probably higher in tumours with enhanced fractal dimension.

In conclusion, our results gives evidence of altered cellular reactions responsible for tumour cells
proliferation by microwaves used in mobile communication. Because the fractal dimension of tumours
growing at enhanced temperature 40 oC was not significantly different from the control growth, we
can only hypothesize that observed increase in tumour growth in GSM field is due to some previously
suggested nonthermal mechanisms behind the cells growth during electrostimulation.
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1. Introduction
Cranial sutures as the growth sites and articulations between bones of the skull resemble curve

lines, which present vast range of morphological variation [7, 8]. Interparietal sutures vary distinctly
among individuals and evaluation of their morphology has always been problematic, especially of
those with intricate pattern. For a long time, scientists who studied sutural morphology used visual
inspection to categorize appearance of cranial sutures and they tried to measure the length of cranial
suture following the curves of the suture or simply to measure distance from the beginning to the end
of the suture [1, 3]. These two parameters if divided by each other serve the index, which express
sutural complexity. For the last decade fractal dimension has been also applied to measure complexity
of cranial sutures as these structures can be treated as fractals because of their intricate contour, which
if magnified reveals details in form of subtle projections [6].

Complexity of cranial sutures depends on the degree of interdigitations of the spicules, which are
present on the edges of two opposing bones. These bony spicules are precisely interlocked and it
provides for a solid connection between cranial bones but allowing small amount of movement.

The goal of this paper is to analyze frequency of the fractal dimension of the set of interparietal
sutures, which in this case serve as example of biological fractal patterns.

Figure 1. Examples of the interparietal sutures as fractal curves
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2. Material and method
We analyzed complexity of 40 interparietal sutures of the external surface of the cranial vault. The

specimens were taken from the skulls which belong to the collection of the Anatomical Museum of the
Jagiellonian University in Cracow. The images of these sutures were acquired in the following
manner. A transparent tape had been placed on the external surface of the skull along the analyzed
suture and its contour was traced with a marker that drew a thin line. Traced silhouettes of the sutures
were scanned with a flat bat scanner and the digitized images were skeletonized to obtain a line wide
of 1 pixel. Such obtained images of cranial sutures silhouettes were subjected to the HarFa software,
which measured fractal dimension of the sutural images using the box-counting algorithm.

3. Results
The estimated fractal dimension of the contours of the interparietal sutures ranges from 1.1 to 1.59

and mean value equals 1.34 (std dev. = 0.114). Frequency of the fractal dimension in the analyzed
sample is presented on Figure 2.
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Figure 2. Frequency histogram of the fractal dimension of the analyzed interparietal sutures

Fractal dimension of the range 1.3 – 1.4 is the most representative for the studied sutures and it
constitutes 45 %, whereas the lowest values (1.0 -1.1) are rare (2.5 %) and contrast to the highest
values (1.5 – 1.6) of fractal dimension, which contribute three times more (7.5 %). More than half of
the analyzed sutures yielded fractal dimension higher than median value (1.35) of the range of
variation. It indicates that interparietal sutures appear more frequently as complicated patterns than
simply convoluted lines.

4. Discussion
Fractal dimension seems to be a proper and objective descriptor of cranial suture complexity and it

is more valid if the sutures are more intricate because than they show higher level of self-similarity.  It
proves that fractal geometry cope better with biological irregular patterns than classic methods of
Euclidean geometry, which in this case would only approximate real features of the analyzed object
[2]. There is considerable diversity in the patterns of cranial sutures; nevertheless they can be
classified as curves which resemble fractals, eg. Koch’s curve. Intricate interparietal suture shows 2-3
orders of scaling and yield fractal dimension about 1.3 - 1.4 [6].

Fractal dimension as a quantitative measure of sutural complexity enables to categorize sutural
complexity.  According to my previous studies, the analyzed set of interparietal sutures can be
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regarded as considerably complicated [9]. Moreover fractal dimension becomes a helpful parameter
which can be easily compared or correlated to other metrical characteristics of the skull or selected
cranial bone. Sutural complexity is strictly related to amount of interdigitations of the edges of the
linked bones. As it was reported by Jaslow increase energy absorption was correlated with increased
sutural interdigitations [5]. The sutures between cranial bones provide for not only interstitial growth
of the cranium, but they also alter the transmission of stress and strain through the skull [4].

Measurements of cranial suture complexity seem to be important in a case of considerations of
mechanical properties of the articulations between cranial bones, their function and stability in the
entire skull. Because of important role which sutures play in the skull a thorough investigation of these
structures is essential for better understanding functional aspects of the skull. We presume that fractal
approach to cranial suture morphology may be crucial in mentioned problems.
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1.  Introduction
Positron emission tomography (PET) provides the possibility to measure accurately radioactivity

concentrations. Standardised uptake values (SUV) have found widespread use since the introduction
more than 10 years ago, because it is a fast and reproducible semiquantitative parameter. Some
investigators proposed the use of compartimental approaches to obtain more detailed information
about the radiopharmaceutical kinetics. However, the application of a two compartment model for the
F-18-Deoxyglucose (FDG) kinetics may be limited in some patients, e.g. if the input function is not
available or the dynamic data are too noisy. We implemented a non-compartmental method, the fractal
dimension, for the analysis of dynamic PET data. In contrast to the two-compartment model, no input
function is required. The fractal dimension (FD) is based on the chaos theory and provides information
about the “deterministic“ or more “chaotic“ distribution of uptake values. It is a new method, which
may be interesting for the evaluation of dynamic data sets like the tracer uptake in an organ as a
function of time. While some authors have calculated the FD of an image to assess the bone structure
or the distribution of lung ventilation, we applied the FD in the time direction to quantify the FD for
each voxel of a dynamic PET study. Purpose of this study was to assess the feasibility and the
diagnostic value of the fractal dimension for oncological patient studies, especially in patients
following treatment.

2. Material and Methods
Patients: The evaluation includes 200 tumor lesions (from 159 patients) as well as 57 benign

lesions (57 patients). Histologies: 22 metastases from malignant melanoma (17 pretreated patients);
four liver metastases from carcinoid tumors (two patients); 29 malignant breast tumors (29 patients);
14 metastases from malignant lymphoma (6 pts with Hodgkin´s disease and one patient with Non-
Hodgkin´s disease, following first line treatment); 56 liver metastases (29 patients with metastatic
colorectal carcinoma, following first line chemotherapy); 31 malignant bone tumors (10
osteosarcomas, 2 Ewing`s sarcomas, 7 giant cell tumors, one intraosseous hemangiosarcoma, two
plasmocytomas, 5 bone metastases, two neuroectodermal tumors, one Non- Hodgkin lymphoma of the
bone and one perspiration gland carcinoma); 44 mal. soft tissue tumors (29 liposarcomas, 3
haemangiosarcomas, 6 leiomyosarcomas, 6 mal. fibrous histiocytomas). 101/200 tumors were treated
with chemotherapy within the last six months prior to PET.

Benign lesions: 2 scars (3 pts) with primary lymphomas, 4 benign breast lesions, 36 benign bone
lesions (10 enchondromas, 7 scars, 3 osteomyelitis, 4 bone cysts, two fibromas, two ganglions, one
osteitis, one bone necrosis, one bone hematoma, one eosinophilic granuloma, two osteochondroma,
one bone edema, one Paget) and 15 benign lesions arising from the soft tissue (7 scars, 5 lipomas, one
hemangioma and two inflammatory lesions).

The final diagnosis included the histological data obtained from surgical specimens for the lesions
of the musculosceletal system and the breast lesions, while the clinical follow-up data for at least six
months after the FDG study was used for the other patients.

Data acquisition: Dynamic PET studies were performed following the application of 300-370 MBq
FDG for 60 min. All patients were in fasting state and blood glucose level was measured prior to PET.

mailto:ads@ads-lgs.com
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A dedicated PET system with a craniocaudal field of view of 15.3 cm was used (theoretical slice
thickness 2.4 mm). All PET images were attenuation corrected and reconstructed with a dedicated
software package on PC systems using an iterative reconstruction algorithm (weighted least square,
ordered subsets).

Data analysis: The evaluation of the dynamic PET data was performed using the software package
PMod, provided by a cooperation with C. Burger, Univ. of Zuerich, Switzerland. Time-activity curves
were created using Volumes of Interest (VOIs). Irregular ROIs were drawn manually. To compensate
for possible patient motion during the acquisition time, the original ROIs were visually repositioned,
but not redrawn. We used for the basic analysis the semiquantitative approach based on the calculation
of a distribution value, for which the term “standardised uptake value” (SUV) was introduced by
Strauss and Conti (The application of PET in oncology. Strauss LG, Conti PS. J Nucl Med
1991;32:623-648): SUV = tissue concentration (MBq/g) / (injected dose (MBq) / body weight (g)).
The 55-60 minute uptake value was used for the quantification of the data. A non-compartment model
based on the fractal dimension was used for the data evaluation. As already shown by other
investigators, the fractal dimension is a parameter for the heterogeneity. A Java-based module was
implemented in the PMod software to calculate the fractal dimension for the time-activity data. The
program is based on the box counting method. Besides the calculation of the FD for VOIs, parametric
images of the FD were generated from the dynamic PET data. The statistical evaluation of the data
was performed using the Statistica software package (Version 6.0, Stat- Soft Co, Hamburg, Germany).
Descriptive statistics and Box- Whiskers plots were used for the analysis of the data. Discriminant
analysis was used to determine the diagnostic accuracy using both SUV and fractal dimension with
regard to the final histological diagnosis.

3. Discussion
PET with FDG is generally used for both the primary diagnosis and staging as well as for follow up

in patients after treatment to assess the effect of therapy and/or detect recurrences. Several authors
have reported a high sensitivity of FDG PET in untreated patients. We evaluated PET studies in both
treated and untreated patients and the quantitative data demonstrated an overlap of the SUV and FD in
these patients. Discriminant analysis revealed a low sensitivity of 61% for all lesions, with a
sensitivity of 55.6 % for the untreated and 63.4 % for the treated subgroup when the SUV were used to
differentiate benign and malignant lesions. The specificity of SUV was high at the level of 91 % for
both subgroups. We noted for FD an overall sensitivity of 78 %, with 70.7 % for the untreated and
84.2 % for the treated lesions. The specificity of FD was 72 % for all lesions, 62.5 % for the untreated
lesions and 82.1 % for the treated lesions, when FD was used to differentiate benign and malignant
lesions. The decision level to discriminate the benign and malignant lesions (calculated by the
software) was 2.3SUV (tu.:>2.3SUV) and 1.145FD (tu.:>1.145 FD).

FD was superior to SUV, but the best diagnostic accuracy was achieved when both parameters were
used. Interestingly, both SUV and FD had a higher accuracy in treated lesions.

Conclusions: The use of FD is a reliable method for the quantification of dynamic PET studies and
seems to be more robust than the SUV in particular for the evaluation of treated lesions. It is a fast
procedure, which does not demand any input function as compared to compartment methods.
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Fig. 1: Calculation of the FD based on box counting method in a time activity curve (TAC) of
a giant cell tumor. The TAC of VOI is overlaid with a sequence of rectangular grids.
The boxes containing some of the structure of the TAC are highlighted with
transparent green.
A log-log plot is generated (number of grid segments, which intersect an object of
interest versus the inverse of the grid side length). The slope of a line fitted to the
data is used as an estimate of FD (right).

 Fig. 2: FDG study of a patient with a soft tissue sarcoma (G I). The SUV image (upper left,
SUV) demonstrates tracer uptake in both the tumor and normal structures, while the
parametric image of the fractal dimension (lower left, FD) shows only the tumor
area. The del ineat ion of the mal ignant l esion is superior as compared to the SUV
image. Upper right: kinetic data for the tumor. Low K1 and k3, resulting in a low
tracer uptake. Lower right: calculation of the fractal dimension for the tumor
(FD=1.41). No input function is needed.



A. D. Strauss, L. G. Strauss/ HarFA - Harmonic and Fractal Image Analysis (2003), pp. 42 - 46

HarFA e-journal http://www.fch.vutbr.cz/lectures/imagesci

45

Fig. 3: Pixelwise parametric FD images of the patient in Fig. 2 using different parameters
for the FD images. Upper row: the total no. of subdivisions was variied from 8 × 8
(left), to 32 × 32 (middle) to 128 × 128 (right), while the max. was kept constant at
20 SUV. Lower row: constant no. of subdivisions (8 × 8), variation of the max. cutoff
SUV from 5 (left) to 30 (middle) to 55 (right).

Tab. 1: Effect of the variation of the number of subdivisions and the cutoff values for the
upper threshold on the Minimum and Maximum estimates of FD.

TOTAL NO. BOXES MAXIMUM (SUV) MIN FD  MAX FD
8 × 8 20 0.017 0.827

32 × 32 20 0.008 1.084
128 × 128 20 0.005 1.321

8 × 8 50 0.017 1.100
8 × 8 30 0.017 0.629
8 × 8 55 0.017 0.390

Tab. 2: Discriminant analysis for all untreated lesions (99/200) with respect to malignant
and benign lesions.

SUV FD SUV, FD

sensitivity 55.55%
(55/99)

70.71%
(70/99)

58.59%
(58/99)

specificity 91.07%
(51/56)

62.50%
(35/56)

91.07%
(51/56)

accuracy 68.39%
(106/155)

67.74%
(105/155)

70.32%
(109/155)

PPV TP 91.66%
(55/60)

76.92%
(70/91)

92.06%
(58/63)

PPV TN 53.68%
(51/95)

54.69%
(35/64)

55.43%
(51/92)
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Fig. 4: FDG studies in a patient with a carcinoma of the left and right breast as well as
small lung metastases on the right side. The FDG study was performed prior to
therapy and one week following high dose chemotherapy. The FDG uptake prior to
therapy was highest for the tumor in the right breast (image, upper left). Following
treatment we noted a decrease of the tracer uptake (image upper, right; both images
are scaled from 0-100 %). The parametric images of the fractal dimension (lower
images) delineate both tumors as well as the lung metastases prior and after
treatment with high contrast. The fractal dimension was lower following therapy.

Tab. 3: Discriminant analysis for all treated lesions (101/200) with respect to malignant and
benign lesions.

SUV FD SUV, FD

sensitivity 63.37%
(64/101)

84.16%
(85/101)

79.21%
(80/101)

specificity 91.07%
(51/56)

82.14%
(46/56)

83.93%
(47/56)

accuracy 73.25%
(115/157)

83.44%
(131/157)

80.89%
(127/157)

PPV TP 92.75%
(64/69)

89.47%
(85/95)

80.80%
(80/99)

PPV TN 57.95%
(51/88)

74.19%
(46/62)

69.12%
(47/68)
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The complexity of the Nautilus Pompilius shell is analysed in terms of its fractal dimension and its 
equiangular spiral form. Our findings assert that the shell is fractal from its birth and that its growth is 
dictated by a self-similar criterion (we obtain the fractal dimension of the shell as a function of time). 

1. Introduction 
Fractal analysis is being applied with increasing frequency to living organisms, trying to explain 

some of the complex forms found in nature. An astonishing example reveals that Ammonites 
continuously increased their complexity up to the point in which they became extinct [1]. It is our 
purpose to study in this paper the amazing complexity of a close relative of the Ammonites, the 
Nautilus pompilius. 

This pelagic species is a native of the western Indopacific ocean (30° N lat. to 30° S lat. and 90° to 
185° W long. [2]), and usually lives at a depth that varies from 50 to 480 meters (temperature ranges 
from 24 to 8 Celsius degrees). 

The shell is mother-of-pearl lined and 
pressure resistant (it implodes at 
approximately 800 m); its hardness has been 
the basis of various ornamental handicrafts [3]. 
But the most striking characteristic of this thin, 
two layered, and spirally coiled shell is its 
internal subdivision in a series of successive 
chambers (phragmocone), starting from the 
very moment of hatching when there are 
already seven chambers present in the shell. 
As the cephalopod grows and requires more 
space, it creates a new chamber by sealing the 
space behind it with a calcareous septum and 
moves to live at the open, bigger end of the 
shell. The rate at which a new chamber is 
created varies, at the beginning it seems to take 
longer for the mollusc to seal the 8th

 chamber but l
chamber [4] and lasts up to the completion of app
space where the mollusc lives [6]; these changes in
the food availability and other environmental varia
complete, there is a small duct in the center of each 
to keep control of the pressure inside every previou
[8]; the heyday of the nautiluses is estimated to be ar

F
c

HarFA e-journal 
ig. 1 Black and white image of a transversal
ut of a Nautilus pompilius shell.

ater on, the process takes from 43 to 77 days per 
roximately 39 sealed chambers [5] plus the open 
 the growth rate are easily understood in terms of 
bles. The sealing of the chambers however, is not 
wall, called siphuncle, that allows the living fossil 
s chamber and thus to regulate its buoyancy [7], 
ound 500 million years ago. 
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A transversal cut of the shell, Fig. 1, shows a perplexing spiral geometry, not found in any other 
natural object; this is a black & white image where the borders have been prepared to facilitate the 
box-counting analysis. The hemishell is 96.1×106.2 mm and 32.2 mm wide; the number of chambers 
is 30. Most amazing is the fact that its growth appears to be self-similar, and thus for the shell to 
possess a fractal dimension. We now proceed to confirm that this is indeed so. 

2. Method 
The digital image in Fig. 1 was obtained by placing half of the shell directly on a scanner bed; the 

cutting 2 was performed going through half of the shell as accurately as possible. All measurements 
are performed on the digital images, in pixel units, and the conversion factor is given by the scanner 
resolution (72 pixels per inch). The borders of the edges in the hemishell were previously tinted to 
gain contrast and improve definition, and thus, making the contour threshold treatment unnecessary. 

 
 
Fig. 2 Fractal dimension of the shell as a function of time, the age is measured in days
after hatching, starting with the 8th

 chamber 

The box counting method (with HarFA) is applied to the original image and the fractal dimension of 
the whole shell is obtained via a linear fit to the data [9]. In order to test the observed self-similarity, 
we analyse the fractal dimension of smaller fragments of the image, that is, if we check that its 
complex structure is the same regardless of the scale used to measure it. To accomplish this test, we 
proceeded as follows; once the box-counting method had been applied to the whole, bigger image, the 
last chamber was digitally eliminated from the initial image and the method reapplied to the new 
image after adjusting the maximum possible size to the new, smaller image size. This procedure was 
repeated up to the point in which there were only the original seven chambers in the shell. We have 
also used an average value for the time required for the construction of a new chamber in order to 
obtain the fractal dimension of the shell as a function of time, Fig. 2, this average value is 60 ± 17 
days per chamber. 
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3. Results 
The fractal (box-counting) dimension of the original Nautilus shell shown in Fig. 1 is 

1.635 ± 0.006; the average of the self-similar fractal dimension of the shell (Fig. 2) is 1.730 ± 0.019; 
this is an average over the life of the particular Nautilus and clearly depends on the accuracy of the 
available data on the shell growth. The lower value for fractal dimension of the original shell with 
respect to the average, is due to the fact that the shell extension where the mollusc lives is included in 
the original image (Fig. 1) 

4. Conclusions 
In the previous analysis, we have shown that the shell of the Nautilus pompilius that we have 

analysed, possesses a fractal dimension, that its value is 1.635 ± 0.006 (1.730 ± 0.019 on average), and 
that it does not depend on the number of chambers (or, equivalently, the age) used to calculate it. This 
establishes the self-similar structure of the shell at any scale/time, and how its growth follows the 
same self-similar criterion. 
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Quantitative Comparison of Lineal Analysis to Box Counting Analysis of a Real 
Microstructure 
Rand Dannenberg 

Chahaya Optronics, 94954 Fremont, USA 
 

Summary – Expressions relating box counting and lineal analysis are developed. Both methods are 
used for fitting the spacing distribution of a real microstructure. The relation to grain size distribution 
is discussed. 

1. Conversion of HarFA spectrum into an Areal Size Distribution. 
HarFA (Harmonic Fractal Analyzer) will generate a plot of the fractal dimension D vs. the ln(s) 

where s is the box size. The fractal dimension is defined as 

D(s) = − dln(N)/dln(s), 
where N is the number of boxes that contain a black pixel when a grid of size s is overlayed on the 
image. If the image is a fractal and self-similar, the D is independent of s 
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where N2 is the number of boxes of side s2 and N1 is the number of side s1. 
If the microstructure is not self-similar, then D varies with s.  In that case, we can treat the right 

hand side as a differential and integrate the small change with the trapezoidal rule to obtain 

ln(N2/N1) ≈ −(D2+D1)[ln(s2) −ln(s1)]/2 
and 
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where D2 and D1 are the D’s at s1 and s2. Note that this is only true if s1 and s2 are close together and 
D changes slowly over that range. 
The number of boxes we would predict to find at s2 if the system remained self-similar from s1 on is 

1

1
212

D

SS s
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Microstructures are not fractals and are not expected to be self-similar. As the box size decreases, 
the rate of “all white box” generation will increase faster than the self-similar case. That loss can be 
equated to an areal change which is the largest for the box sizes closest to important spacing in the 
image. 

The area reductions between s1 and s2 are 

A = (N2SS – N2)s22. 
Writing s2 = s1+∆s and using (1+∆s/s1)-D ≈ 1−D∆s/s1 for small ∆s, after some algebra one finds 

∆A = (1/2) N1 (∆s/s1) (D2 – D1) s22. 
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Since s1 ≈ s2 we can drop the subscripts, and replace N1 by N(s). By multiplying by ∆s/∆s we can 
treat (D2−D1)/∆s ≈ dD/ds, and rewrite, 

∆A(s) = s N(s) ∆s2 (dD/ds)/2. 
This is a distribution that can be normalized by dividing by 

∫∆A(s)ds/∆s. 
The number of boxes is found by dividing ∆A(s) by s2, 

∆N(s) = s-1 N(s) ∆s2 (dD/ds)/2. 
For image analysis, ∆s is a constant, and is equal to the scaled width of a pixel. This expression 

gives a relationship between the area lost at important spacings in the spacing distribution, and the rate 
of change of the fractal dimension. For perfectly self-similar images, ∆A(s) = 0 and ∆N(s) = 0. 
∆A(s) and ∆N(s) might be related to a grain size distribution through modeling assumptions. 

However, that is difficult to do. The important point to be taken from this analysis is that the size of 
the activity is proportional to dD/ds. The peaks in the derivative are useful for identifying feature sizes 
of activity and verifying intuition about important grain size distributions in a microstructure. 

2. Quantification of a Variation of the Secant Method 
The secant method is a fast manual method in which a line of length S is drawn over a 

microstructure and the number of intersections is counted. Many secants are drawn with the number of 
intersections counted then averaged. It is easy to show that the average grain size returned by this 
method is Dsec = S.(1/n)ave ; averaging S/n on each secant, the average grain size per secant. Also, 
D’

sec = S/nave ; averaging n/S on each secant then inverting the average.  
The latter can be very easily shown to be much quieter and accurate than the former. 
A variation on the secant method is to record the intersection length for every intersection on every 

secant and average the intersection length values. When this is done, the average grain size determined 
by the variation of the method is 

Dint = Σ l/N = TS/Σ n = S/(1/T)Σ n = S/nave = D’sec. 
where l is an intersection length, N is the total number of intersections, n is the number of intersections 
on a secant, and T is the total number of secants.  

More information is available in the method that produced Dint. Suppose we make a histogram of 
the number of intersections that fall between l and l+∆l, using parallel secant lines that “scan” in a 
direction perpendicular to the lines, with the spacing between secants ∆l.  Now consider an image of a 
microstructure, and let ∆l be the width of a single pixel. The length distribution would be the sum over 
all the individual grains of the number of times the spacing l occurred in each grain, 

),(),( OlOlf
G

G∑= η . 

The O designates the orientation to which the secant lines are perpendicular. G designates a grain. 
This is a very simple expression. In order to relate it to a grain size distribution some assumptions 

about the make-up of the microstructure need to be made. Let us assume the following: 
1. There is a number distribution of grain sizes in the microstructure, n(g), where g is a grain size. 
2. The grains have the same shape. 
3. There is a function that tells us the number of times a length l occurs in a grain of size g. 

q(l/g,O) = q(β,O), where the length parameter β = l/g. 
4. The secant will move parallel to the largest length in the grains.  
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As an example, suppose there was a microstructure that was made up of all square shaped “grains” 
of different sizes filling space, and the secant line moves parallel to the diagonals. In that case, 
q(unity,diag) = 1 and q(all others,diag)=2. In grain of regular shape one would expect to find in a real 
microstructure the rate of change of q with respect to β is expected to be small. By assumption #4, we 
are defining the grain size to be the largest length in the grains. In the limit if circular grains, the secant 
lines will always be parallel to the length that defines the grain size. The latter also implies that 
q(l/g) = 0 for g < 1. 

In reviewing these assumptions, it should be remembered that a large body of work exists on the 
characterization of grain size distributions in metals, where it is assumed that all grains are either 
circular or square, without considering the implications for the space-filling requirements. 

The sum can now be taken over the grain sizes instead of individual grains, and written as 

 dg
g
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l
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1)(),/()(),/(),( , (1) 

where the ∆g comes from passing the sum to an integral. The limits of the integration (or range of the 
sum) come from g(l/g) = 0 for g < l, since there can be no lengths in a grain that are greater than the 
grain size (by assumption #4). Equation 1 tells us that f(l) is a cumulative distribution, most notably 
from the integral form. 

To arrive at a relationship between f(l) and n(g) that might be extracted directly from data, consider 
from the summation that 
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If q is constant or changes slowly such that 
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then terms containing n(l+p∆l) are equal and only the very first term in the series remains in the 
difference, so that 
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An alternative way of arriving at equation 2 is to rewrite equation 1 as the anti-derivative difference 
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Differentiating both sides gives 
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The first term is zero, because n(g) = 0 for g significantly less than ∞, therefore, the anti-derivative 
at infinity must be equal to a constant. As for the second term, it must have the same functional form 
as the integrand of equation 1, resulting in 

g
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)(d , 

which leads back to equation 2. Therefore, the assumptions about the slow rate of change of q are built 
into the conversion from sum to integral. 
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Consider that F(g) is the anti-derivative of a distribution. I = F(∞) − F(0) is the total area beneath 
that distribution, in this case, the total number of intersections in the image. Unless the distribution is 
weighted very close to g = 0,  I ≅ F(∞). 

Note that the O has been dropped, but the orientation dependence is implicit. The proportionality in 
Equation 2 is there since q(1) is constant. Both derivations lead to the constant of proportionality q(1), 
thus in grains of all the same shape, the only remaining influence from the shape function is the 
number of times the largest length g appears in the grains of size g. 

The total area of the grains of size between l and l+∆l is 
 ∆A(l) ∝  n(l)l2. (3) 
In the above derivations, it is to be understood that the l’s and g’s  and s’s are equivalent as far as 

the histogram is concerned. 
Grains are not square, nor do they have the same shape, so there is much uncertainty surrounding 

the entity q(l/g). Given the wealth of work in which microstructures have been treated as though all the 
grains are squares or circles and the common equating of average secant intercept length to average 
grain size, we argue that q(l/g) = constant will put this method on similar footing with more standard 
methods. Using q=2 seems reasonable for circles or diamond shaped grains. 

It should be remembered that f(l,O) is actually convolution of number of grains of size l and grain 
shape. 

3. Application to a complicated microstructure 
The assumptions made above are never going to be strictly true, but if they are good enough, then 

they would provide functional forms that would be useful for fitting data to real microstructures, and 
that is the most important test.  

An example will be shown for a microstructure that is very complex. The figure below shows a 
microstructure that has either grain size gradients and/or overlapping grain size distributions. To make 
matters more complicated, the image does not show the full microstructure, which enhances gradients 
in the data. 

Our image is of a specimen of cryomilled Ni20Cr. It is smoothed in Scion Image, and converted to 
an edge image in the same program. To generate D(l) and dD/dl it is analyzed in HarFA.  

Using the intersection analyzer code called DA written at Rockwell, a histogram of 23,000 
intersection lengths is created, f(l). The data is then differentiated as per Eqn. 1. 

Peaks are observed in dD/dl vs. 2 l and also df/dl vs. 1. These peak positions and widths are then 
combined to fit gaussian forms for n(g) that are integrated in Eqn. 2 in order to fit f(l). The gaussians 
are then differentiated, and the fit is compared to the df/dl data. As will be seen, the fits are reasonable. 
Fitting of the gaussians is done on f(l) since differentiating produces noise. 

Two additional ideas are incorporated. First, in the peak identification from dD/dl, the l’s of the 
peaks are multiplied by 2  for the centers of the gaussians. This is because we believe the area is lost 
due to shrinking of the box diagnols below the spacing between grain boundaries. This correction does 
not have to be applied to the intersection spacings. Second, in Eqns. 1−3, we assume that q(l/g) = 2 for 
all l/g since it will be equal to two for the overwhelming majority of l’s for space filling grains in the 
simple case where their shape is square. 
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Original Image 
 

After Conversion to an Edge Image 
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Figure 1 Analyzing the image in the intersection analyzer to generate f(l). 
 

Figure 2 Analyzing the image in HarFA to extract D(s) and dD/ds. 
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Figure 3 Comparison of dD/dl and df/dl showing the qualitative agreement. In both, the 
peaks at 0.76 microns and 2.76 microns match. The df/dl suggests activity at 1.27 microns as 
well. Those three, and no others, were used to fit gaussians to f(l) using Eqn. 2. Recall from 
Eqn. 1 that the grain size distribution n(g) = −∆g/q(1) × df/dl. 
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Figure 4 Fit #1 to the data using Equation 2 and gaussians with peaks from the 
aforementioned dD/dl and df/dl plots. 
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Figure 5 Fit #2 to the data using Equation 2 and gaussians with peaks from the 
aforementioned dD/dl and df/dl plots. 
 
Table 1 The two sets of gaussians used on the fits. 

Gaussians 1-#1 2-#1 3-#1 1-#2 2-#2 3-#2 
2No 10 70 195 10 80 210 

lo (um) 2.756 1.4 .76 2.756 1.5 .76 
σ(um) 1.3 .5 .12 1.3 .4 .12 
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Figure 6 The yellow line is the derivative of the fit to f(l) from Eqn 2, gaussian set #1. 
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Figure 7 The gaussians are multiplied by l2 as per Eqn. 3 to get the areal distribution. 
 
Table 2 Relative Areas of Grains in Distribution. 

  gauss#1 gauss #2 gauss #3 
% Area 55.87 37.15 6.96 
lo(um) 2.756 1.4 0.76 
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Figure 8 This chart is a reminder that f(l,O) has grain shape dependence. Note that in the 
context of Eqn. 1, q(l/g,O)→ 0 for l < 0.25 microns. 
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4. Discussion.  
We are able to relate the fractal dimension derivative to length spectra from a variation on 

the secant method. The assumptions to relate the information to grain size distributions 
(Eqn. 1) are in need of comment, and though they are somewhat artificial, they are very 
similar to the assumptions that have been used to deal with grain shape in a large body of 
work on metals. The transformations on f(l) are performed to convert it into a representation 
of a grain size distribution, but it should be understood there are inherent errors. Good fitting 
to data f(l) and df/dl is possible from observations on the combined methods. 

Consider the following perspective: it is often the case that the only information reported 
regarding the microstructure of a material is average grain size, sometimes with no mention of 
how it was determined. The figure actually reported may be the average of gradients or 
multiple distributions, and the omission of distribution information means that there is a gap 
in the literature relating material properties to size distributions (note the use of the words size 
distributions in general). 

Also, note that emphasis is being put on fitting the f(l) with gaussians, with clues about 
where the gaussians are placed coming from the derivatives of f(l) and D(s). This is because 
there is a lot of existing work on normal microstructures in which the distributions of secant 
intersection lengths and the average lengths in those studies are referred to as grain size 
distribution and average grain size.  

Although the information generated by the methods in this paper may not be directly 
relatable to the usual definition of a grain size distribution, what is certain is that as the length 
scales of interfaces in materials fall through the nanoscale regime, all the intersection lengths 
in images will fall as well, along with average grain size. The distributions and fitting 
functions generated in this method offer additional means for standardizing reporting on the 
structure of polycrystalline materials. The method is fast and can be automated. The 
distributions derived can be just as easily correlated to physical properties of materials as 
average grain size. 

The two methods under consideration do not show all of the same peaks. The dD/ds does 
not have the peak at 1.4 microns, but the df/dl does. It is interesting to envision what the 
specific cases are that could describe the situation when there are fewer intersection lengths l 
counted in the image, yet there can be large amounts of all white box generation of side l. The 
case of harmonics is pictured below, in which boxes of size so/2m are shown for m = 0 and 
m = 1. For so/2 there are no lines of length so/2 directly associated with the white box 
generation, as there are for so. 

 
Figure 9 Haromincs so  (the large box) and so/2 (the quarters). 
The latter is not the case in our image, since the positions of the peaks of the fractal 
dimension do not follow a harmonic trend, s = Xo/2m. 
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Figure 10 No harmonic trend is seen for any value of Xo or progression of m, that is, a 
straight line of a slope of unity is not possible. 

5. Conclusions. 
The lineal analysis produces f(l) which is a cumulative size distribution. The fractal 

analysis produces D(s). The positions of peaks in df/dl, and dD/ds corresponding box 
diagonals give clues about where to place gaussians or other distributions shapes. Using the 
methods together is necessary, as the peaks in both methods do not always match. 
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The aim of the study was to determine if fractal analysis of the trabecular structure of the calcaneus, 

as it appears on the plain lateral radiograph, can detect alterations attributed to aging. Aging is 
accompanied by changes of trabecular bone structure due to the remodeling process. This process is 
accelerated in the group of postmenopausal women. 

1. Materials and Methods 
We analyzed 2 sets of 12 radiographs from two groups of women. The first group with ages 

between 26 and 38 years (mean age = 33 years), the second with ages between 48 and 65 years (mean 
age = 56 years) 

Radiographs were digitized using a Fujifilm FinePix 2600 Zoom digital camera. The colored 
images were transformed to grayscale images. 

Three ROI were selected on each radiograph. Selection and saving of ROI was done with software 
CalcaneuPrj (author: Bogdan Ionescu). ROI 
1 corresponds to the thalamic region, ROI 2 
to Ward’s triangle and ROI 3 to the region 
where the posterior plantar group of 
trabeculae intersects the thalamic group 
(Fig. 1). 

Because there is a brightness gradient due 
to thickness difference of bone and soft 
tissue, a dynamic thresholding technique 
(software: ImageJ; plugin’s author: Gary 
Chinga) was used to segment the images 
(Fig. 2,3,4). 
Figure 1 Position of the three ROI 
 

   

Fig. 2 Segmented ROI 0. 
The box-counting fractal dimen
(authors: Martin Nezadal and Oldri
pairs of the 3 parameters. The res
distribution of the points on the grap
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2. Results 
Table 1 contains BCFD values for the 26-38 years group. Table 2 contains BCFD values for the 48-

65 years group 

Table 1 BCFD values for the 26-38 years group 
Case no. 1 2 3 4 5 6 7 8 9 10 11 12 
ROI 0 1,868 1,841 1,871 1,875 1,843 1,863 1,858 1,894 1,866 1,865 1,865 1,870
ROI 1 1,863 1,795 1,869 1,873 1,845 1,858 1,858 1,886 1,887 1,865 1,889 1,876
ROI 2 1,865 1,849 1,882 1,882 1,844 1,865 1,866 1,882 1,875 1,867 1,872 1,886

 
Table 2 BCFD values for the 48-65 years group 
Case no. 13 14 15 16 17 18 19 20 21 22 23 24 
ROI 0 1,882 1,885 1,873 1,880 1,904 1,878 1,876 1,899 1,895 1,893 1,894 1,872
ROI 1 1,888 1,898 1,876 1,871 1,899 1,879 1,865 1,898 1,898 1,904 1,903 1,873
ROI 2 1,865 1,887 1,864 1,869 1,881 1,879 1,884 1,892 1,902 1,899 1,905 1,888

 
The following graphs resulted by plotting BCFD of one ROI against BCFD from another ROI of the 

same radiograph (Fig. 5,6,7). 
 
 

 
Figure 5  BCFD of ROI 0 plotted against BCFD of ROI 1 
 

 
Figure 6  BCFD of ROI 1 plotted against BCFD of ROI 2 
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Figure 7 BCFD of ROI 0 plotted against BCFD of ROI 2 

 
Examining these charts it is obvious that for all regions of interest BCFD is higher for the 48-65 

group(Fig. 8). A tendency for spatial separation of the points from the two sets is also apparent. 
 

 
Figure 8 Mean values of BCFD for each ROI and the 2 

 
We tried to quantify the apparent spatial separation of the points corresponding to the two sets of 

radiographs using a nearest neighbor method. Tesselations of Voronoi were drawn (software: 
VoronoiPainter; author: Marko Krajnc) (Fig. 9,10,11). 

 

Figure 11 Tesselations of BCFD for ROI 
1 plotted against BCFD for ROI 2. Red = 
26-38 years group; green = 48-65 years 
group. 
 

 

 
Figure 9 Tesselations of 
BCFD for ROI 0 plotted 
against BCFD for ROI 1.
Red = 26-38 years 
HarFA e-journal 
 
Figure 10 Tesselations of 
BCFD for ROI 0 plotted 
against BCFD for ROI 2. Red 
= 26-38 years group; green = 
48-65 years group. 
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Each point was withdrawn and reintroduced in the tesselation determined by the rest of the points. 
This operation allowed to categorize a “correct” or “incorrect “ positioning of each point (Fig.12,13). 

 

Fig. 12 Marked point will be
withdrawn. 

Fig. 13 Aspect of the tessela-
tion after withdrawal of the
point. If reintroduced, the point
falls into the wrong region. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The correct and incorrect decisions are presented in the tables 3, 4, 5. 

Table 3 
1 2 3 4 5 6 7 8 9 10 11 12 

right right wrong wrong right right right wrong right right right wrong 

13 14 15 16 17 18 19 20 21 22 23 24 

right right wrong wrong right right wrong right right right right wrong 
Decisions for BCFD of ROI 0 plotted against BCFD of ROI 1: 8 wrong decisions out of 24. 

 
Table 4 

1 2 3 4 5 6 7 8 9 10 11 12 

right right right wrong right right right wrong right right right wrong 

13 14 15 16 17 18 19 20 21 22 23 24 

right right wrong right wrong wrong wrong right right right right wrong 
Decisions for BCFD of ROI 0 plotted against BCFD of ROI 2: 8 wrong decisions out of 24. 

 
Table 5 

1 2 3 4 5 6 7 8 9 10 11 12 

right right right right right right right right right right right wrong

13 14 15 16 17 18 19 20 21 22 23 24 

wrong right right wrong right wrong wrong right right right right wrong
Decisions for BCFD of ROI 1 plotted against BCFD of ROI 2: 7 wrong decisions out of 24. 

3. Discussion and conclusions 
A radiograph of the calcaneus is very often solicited in outpatient practice for various reasons. It 

would be very challenging to try to extract as much information as possible from this acquisition. 
Fractal analysis of radiographs of calcaneus offers information about the complexity of the 

trabecular pattern. In this study we tried to find out, to what  extent, fractal analysis alone can 
distinguish changes of the trabecular pattern between two groups separated by a single criterion – age. 
We assumed that analysing more regions of interest and correlating the results would enhance the 
possibility to separate the two groups. It would add probably information related to the heterogenity of 
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[1] 

[2] 

trabecular structure. We proposed also a nearest neighbor classification algorithm. The results we 
obtained may represent the training examples for further query instances. 

Our study shows that fractal dimension of the trabecular bone increases with age. Similar result are 
reported by Lespessailles et al., 2002. Other studies concluded that FD is higher in subjects with lower 
bone mass, history of osteoporotic fractures (Bollen et al.,2001).  Subjecting a radiograph to the 
described algorithm, we have 2/3-3/4 chances to find the correct answer about age group. Errors are 
more often in the elderly group, probably due to more dispersed values of BCFD. 
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The cranial bones are usually joined by complex osseous projections, which precisely interlock. The 
image of such connections between two cranial bones resembles outline of the coastline with many 
bays. The contour of these lines may vary from slightly convoluted lines to complex patterns that 
resemble coastlines with many peninsulas and bays [4]. When a selected segment of cranial suture is 
analyzed, one may perceive similar property of curviness. This character is typical for fractal 
structures and it is termed as self-similarity. However, the cranial sutures are not typical fractals and 
self-similar properties are limited to 2-3 orders of scaling but they yield fractal dimension, which 
differs with kinds of suture-lines [5]. In this respect fractal dimension becomes a useful index for 
determining sutural morphology in terms of its complexity.  

The cranial sutures can be modeled as lines that have been deformed in a particular way, 
demonstrating interfingering and lateral excursions [3]. Possible formation of cranial suture contour 
could be explained by the random midpoint displacement, which is widely used to depict fractal 
coastlines or fractal landscapes [6, 9]. Here are the rules of this algorithm and its initial steps are 
presented in the figure 1.  
1. Make a straight line 
2. Grab the middle of the line and move to one of the side (eg. right or left) by a random amount. 
3. Then take one of the two new segments and drag the middle point toward the right or left side 
4. Recursively repeat this process with smaller segments 
5. Stop the process when the individual segments are too short to be worth to be splitting. 

 

 
 
Figure 1 Six steps of the random midpoint displacement method applied to the line 

 
The method starts with a simple line and recursively adds random details, which number of 

elements is equal 2n, where n is the step number. Each step produces twice as many segments of the 
line with random displacement as the step before. A brief mathematical description of the random 
midpoint displacement algorithm can be formulated in the following way:  
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Assume that values X(0) = 0 and X(1) are given. X(1) is obtained as a Gausian random number. The 
next step refers to the partition the interval [0,1] into two subintervals: [0, 1/2], [1/2, 1], and the X(1/2) 
is defined as the mean of X(0) + i(1) plus a displacement D as the Gaussian.  
The big subdivision gets a big displacement, while the smaller subdivisions get smaller displacement, 
what makes the line fractally. The initial three steps of the midpoint displacement algorithm are 
presented as:  

 X(1/2) = [X(0) + X(1)]/2 + D1 

 X(1/4) = [X(0) + X(1/2)]/2 + D2  
 X(3/4) = [X(1/2) + X(1)]/2 + D3 
This process is continued with displacements Dn having variance ∆n

2. In the result, the baseline is 
displaced by the fractal line, which looks like a silhouette of the coastline [8]. 

The entire process of the random midpoint displacement is based on randomly generated numbers 
and usually controlled by three variables: the number of iterations, roughness and the number of initial 
points. Here are the definitions of these variables [1, 10]: 

− Random Number – are generated by the computer uses a function called “random number 
generator.” The random number generator follows a normal random distribution function, with 
mean µ = 0 and variance σ2 = 1. A different distribution function, or a different mean or 
variance would generate different random numbers, and thus different coastlines. 

− Roughness – is the factor by which the perturbations are reduced on each iteration. Higher 
values result in a smoother surface while lower values result in a rougher surface. Roughness 
(R) is also related to scale (S) by the exponential relationship: S = (1/2)R. Thus, a larger scale 
means a smaller roughness value, and a rougher landscape.  

− Initial points – points where the coastline is broken during its formation. They are specified to 
provide some degree of control over the appearance of the coastline. Usually, the number of 
initial points may very from 2 to 5. 

− Number of iterations – indicate how many times the process of the midpoint displacement is 
repeated. At n iterations, there will be 2n segments of the line. The larger number of iterations 
means the smaller parts on the initial line and it results in the increase of the polyline segments. 

The procedure of random midpoint displacement can be performed by software and the results are 
visible on the computer screen. The example of such software can be found in the web [2, 6,10].  

 The appearance of the generated coastlines resembles the outlines of the cranial bones, which are 
joined by the sutures. In other words, the algorithm of random midpoint displacement becomes a 
model of sutural pattern formation (compare figure 2, figure 3 and figure 4).  

Fig
rec
lin

HarF
 

ure 2 Image of the cranial vault with demarcated sagittal suture that joins two parietal bones. Red
tangle marks the region of interest (ROI), which is magnified in the opposite picture. The orange
e represents suture contour or the border between two parietal bones joined by the suture. 
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ure 3. The edge of the right parietal bone within the ROI, (left parietal bone is removed).

e isolated one pixel line as a coastline represents pattern of cranial suture
a       b 
ure 4. Examples of computer generated coastlines (a) using random midpoint displacement
orithm and natural patterns of cranial sutures (b) 

omputer generated curves were compared to the curves of real cranial sutures by means of fractal 
nsion, which was measured as the box-counting dimension with implementation the HarFA 
are [7]. The box-counting dimension (DF) is defined as: 

)(1/ log
)( log  lim

0 εF ε
εND

→
= , 

re: N(ε) is the number of boxes of side-length ε needed to cover the analysed object.  
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The box-counting dimensions of the computer-generated coastlines were compared to the fractal 
dimensions of the natural cranial sutures. As the result we got similar values of fractal dimensions 
ranging from 1.10 – 1.40 and moreover these values remain consistent with the fractal dimensions 
calculated by other researchers [3, 5, 11]. This indicates those computer-generated patterns and cranial 
sutures show similar complexity and because of their appearance and character they were regarded to 
belong to the same class of geometrical objects termed as fractal structures.  

 The proposed coastline model of the cranial suture is a simplification as it represents only the 
outline of the edge of the cranial bone and not entire surface, which faces with the opposing bone. 
However, this algorithm can be extended into 2D structures and then it will become more appropriate 
for modeling surfaces of the cranial bones, which contact within the suture. Moreover, such 
mechanism of structure formation, in the case of cranial suture might be possible in certain range of 
scale and it does not have to be universal for all sutures. Certainly, the suture morphogenesis is highly 
complex process, which is dictated by various factors and their interactions are not based on singular 
algorithm. The midpoint displacement method produces natural-like object patterns, which appearance 
corresponds to cranial suture morphology. However, sutures, which are obtained with random 
midpoint displacement algorithm sometimes, are not ideal representations of the real cranial suture 
because of produced unnatural features. Therefore their appearance depends significantly on 
relationship between values of three parameters: roughness, the number of initial points and the 
number of iterations. Nevertheless, this method models geometrical construction, which might be 
attributed to the cranial sutures. Such a model may help to understand mechanisms of changes in the 
bone edges configuration when they form suture during skull development. This algorithm shows also 
clearly the idea around implication of fractal geometry not only to describe contours of the cranial 
sutures but also to explain hypothetical mechanism that may be engaged in suture morphogenesis. 
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Abstract 
The fractal dimension is a measure for the coarseness of objects and textures. This property can be 

assigned to graylevel images to get a measure for the coarseness of a texture in an image, [2]. The 
theme of this article is the application of fractal dimension to arts analysis. Considering 7 artists, 
everyone represented by about 18 images, we searched for qualified description parameters for the 
painters characteristics. We evaluated among other feature values 3 different types of fractal 
dimension, namely capacity (or box counting) dimension, information dimension and correlation 
dimension, [3]. With a special feature selection algorithm the best features for the classification of the 
images with respect to the painter were evaluated, [5]. The fractal dimension turned out to be under 
the best features. In the following the computation of the fractal dimension, our classification task and 
a few results are discussed. 

1. Fractal Dimension 
We want to define the notion of a dimension of an image. From the mathematical point of view the 

best way would be to take the Hausdorff dimension [1], since this exists for all (bounded) subsets of a 
metric space, and an image is a bounded subset of Euclidean 3−dimensional space (at least a graylevel 
image). But the Hausdorff dimension has a complicated definition and it is by no means easy to 
calculate it. Therefore simpler versions for the notion of a dimension were suggested. A very useful 
notion goes back to A. Renyi [4], the generalized q−dimension. We will start with one version of this 
q{dimension and will specialise then to its calculation for images.  

1.1. The generalized q−dimension of A. Renyi 
Let A be a bounded, measurable subset of the 3-dimensional space ℜ . For   3 0>ε we consider a 

lattice of cubes of side length ε  in ℜ call these cubes C1; C2; .... Then let 3

 
)(

)(:)(i Ameasure
CAmeasurep i∩

=ε , 

(this gives a probability measure on A. To be more precise Prob:)(i =εp (a point of A lies in Ci)). 

Definition 1.1 For  the generalized q−dimension of A is defined as 0≥q

 
ε

ε

ε ln

)(ln

1
1lim:)(

0

∑
⋅

−
=

→

i

q
i

q

p

q
AD , 

(if the limit exists). 

Remark 1.2 It can be shown that Dq(A) is well defined, i.e. independent of the choice of the 
cubic lattice (origin and direction of axes) and that Dq(A) is a decreasing function with 
respect to q. Furthermore for  one has 03ℜ⊂A 3)(q ≤≤ AD . 
Important special cases are: 
q = 0: Here we use the convention that 00 = 0. Then ∑ =0))(( εip (number of cubes ofside length 

ε that contain a part of positive measure from A) ),( εAN= . 
So we get from the definition above 
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which is usually called the fractal dimension of A (or also capacity dimension of A). 
q = 2:  The definition gives 
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the so called correlation dimension of A. The expression in the nominator has a 
nice interpretation, namely Prob))(( 2∑ =εip  (2 points of A lie in the same cube Ci). 

q = 1: In this case we have to be careful since for q = 1 the nominator and the denominator in the 
 definition of Dq(A) vanish (apply de l'Hospital). 
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which is generally called the information dimension of A (since the nominator 
corresponds to the entropy, which is a measure for information). 

1.2. Practical calculation of the dimension of an image 
An image is a finite set of points (= pixels with certain grey values). Unfortunately one can 
easily show: 

 0)setinite( =fDq , 

So the above definitions cannot be applied directly, since the value 0 for a dimension is not 
very interesting. Taking another interpretation of a pixel as a square of side length 1 (say) 
then the limit 0→ε  makes no sense (ε  should be in this case). Therefore we write the 
definition for Dq(A) in the following way: 

1≥
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(where ),( εArr =  is an error term). Multiplying with the denominator gives 

 )/1ln()(lnln)1( rpqD
i

q
iq +=− ∑ εε , 

or if we write εln)1( −= qxc ; ∑=
i

q
ic py )(ln ε , we get 

 rxDy lncqc += . 

This is the equation of a straight line (in a logarithmic coordinate system) with respect to a 
fixed lattice of squares or cubes and we are interested into its slope Dq. Practically we choose 
several values for ε , calculate (from the image A) the probabilities 

 
) of (pixels#

)in   of pixels(#)( i
i A

CAp =ε , 

and get for each ε  > 0 a point . The slope of the regression line defined by these 
points gives finally the q−dimension Dq(A). 

),( εε yx

2. Results 
In the following table 20 sample images of 5 different painters are shown and the respective 
fractal dimensions are listed. Values of the capacity dimension and information dimension of 
the graylevel version of the images (capdim gray, infdim gray) and the capacity dimension of 
the binary version (capdim bin) are presented. To obtain the anonymity of the artists, we used 
acronyms instead of their names. 
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painter bg 

   
capdim gray 2.246206 2.091211 2.270820 2.203044 
infdim gray 2.281946 2.082100 2.278741 2.241939 
capdim bin 1.525424 1.574814 1.674945 1.430831 

painter mk 

  
capdim gray 2.227004 2.237732 2.250339 2.225809 
infdim gray 2.182206 2.193382 2.214684 2.165344 
capdim bin 1.990236 2.050675 2.012956 1.976064 

painter if 

   
 

capdim gray 2.243127 2.234009 2.229157 2.221351 
infdim gray 2.223151 2.205055 2.189209 2.198305 
capdim bin 1.814990 1.797485 1.943745 1.705103 

painter ve 

  
capdim gray 2.229848 2.284704 2.237109 2.283854 
infdim gray 2.181884 2.264767 2.221189 2.266364 
capdim bin 1.915681 1.850409 1.797892 1.910826 

painter wi 

  
capdim gray 2.299416 2.368323 2.327271 2.335588 
infdim gray 2.272672 2.346169 2.290355 2.355060 
capdim bin 1.799837 1.969536 1.983552 1.901535 

3. Feature Selection and Image Classification 
In our method we use first and second order statistical data to build a feature-space representation 

for various painters. We combined up to five features and obtained for each feature combination a 
feature-space which is divided into separate classes representing our painters. In order to extract the 
best feature combination, we computed the distances of the feature values of each image of a painter to 
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the mean values, the centre of each class. We chose the Mahalanobis distance as our probabilistic 
distance measure. Afterwards, we noticed the class to which each feature vector (representing an 
image) of a painter has minimal distance. Of course, the classification is correct if the feature vector, 
the image, has minimal distance to its painter. Thus we obtain the best feature combination for the 
maximum classification rate. 

With these best features we try to identify the painter of an unseen image. To improve the 
classification results we cluster pictures of the painters before classification with respect to different 
styles, see [5]. 

For illustration we consider 7 painters. Every painter is represented by 16 to 20 images. As an 
example we tried to classify these images in a 4{dimensional feature space. In the following table a 
few results for the percentage of the correct classified pictures from a set of 128 pictures are shown. 
Values of the capacity dimension of the graylevel version of the images (capdim gray) and the 
capacity dimension of the binary version (capdim bin) are used as well as statistics, like entropy, mean 
and variance, of the graylevel distribution in the hue image (hue entropy, hue mean, hue variance). 

 

feature1 feature2 feature3 feature4 percentage of correct 
classified pictures 

capdim bin capdim gray hue entropy hue variance 75 percent 
capdim bin capdim gray hue mean hue variance 80 percent 
capdim bin capdim gray hue entropy hue mean 70 percent 
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1. Introduction 
This communication describes the application of fractal analysis to epigenetic suppression of 

malignancy as a potential tool for diagnostic and prognostic purposes. Using the fractal dimension, we 
found that the complexity of malignant cells is lower in comparison with non-malignant ones. 

Usually, the structure of an object can be described utilizing tools of common geometry. A square, 
for example, can be described by the measure of its sides. However, “complicated” objects, 
particularly naturally occurring objects such as clouds, mountains, and coastlines, do not apparently 
appear as a sum of triangles and lines. Such objects are better described using fractal geometry. Fractal 
geometry has been known as a mathematical concept for many years and was introduced by B. 
Mandelbrot  [1]. Its tools were applied successfully to characterize irregularly shaped and complex 
figures by a mathematical value wherever Euclidean geometry fails. One of the advantages of fractal 
analysis is the ability to quantify the irregularity and complexity of objects with a measurable value, 
which is called the fractal dimension. The fractal dimension can be determined using the box-counting 
method  [2]. Fractal analysis techniques are common tools in physics and image processing. 

Fractal geometric analysis, using such tools as fractal dimensions, is thus a more valid method of 
quantification and is more likely to provide discrimination between different types of fractal objects. 
In the field of pathology [3], fractal geometry has proved its utility in particular in cancer research [4], 
such as in endometrial carcinoma [5], in breast cancer [6] and tumour growth [7]. In view of the 
amazing growth in the understanding of the fractal complexity of the cancer mechanisms, most 
researches are carried out by measuring the fractal dimension (FD) of different cancer cells or tumour 
growth. But nothing has been said in relation to the reverse processes, the epigenetic suppression of 
malignancy. Recently, Lotem and [8] have found that there are Myeloid leukemic cells that can be 
induced by adding different cytokines including IL-6 to differentiate to non-dividing mature 
granulocytes and/or macrophages.  

2. Results 
We applied a fractal dimension analysis, in particular box-counting dimension [9] to epigenetic 

differentiation of leukemic cells. We found that a significantly higher architecture complexity was 
noted for non-malignant cells during different stages in differentiation to granulocytes (FD = 1,332; 
1,260; 1.209, Figures 1b,c,d) in comparison with myeloid leukemic cell, (FD = 1.018, Figure 1a). 

As it is shown, the complexity of the non-malignant cells is higher than in the malignant one in 
epigenetic suppression of malignancy by inducing differentiation bypasses the genetic abnormalities in 
tumour cells. As a fact, this finding corresponds to a general regularity in the biological systems [10]. 

In summary, fractal analysis applied to epigenetic differentiation of leukemic cells show promise as 
useful measure of these complex processes. Furthermore, it may provide an additional tool to 
prognostic information as well as to shed light on the evolution of tumour cells toward the 
epigenetically reprogrammed to a non-malignant phenotype cells. 
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Figure 1  Epigenetic differentiation of genetically abnormal myeloid leukemic cells to non-
malignant granulocytes by IL-6: Black/white representation of with a grey level threshold set at: 
(a) leukemic cell (50-100); stages in differentiation to granulocytes b (100-150), c (94-136), d (50-
100). 
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Abstract 
Some researchers have suggested that analysing the physical structure of environmental stimuli may 

provide insight regarding an underlying characteristic of nature that contributes to human functioning. 
Specifically, it has been proposed that visual scenes with particular fractal characteristics (i.e. mean 
fractal dimension, maximum fractal dimension) are preferred by humans and may enhance 
functioning. Moreover, these fractal characteristics appear to be particularly common in the natural 
environment. This suggests that the positive effects that are generally associated with exposure to 
nature may be at least partially explained by human response to the mathematical structure of the 
sensory stimulus. This study will investigate the hypothesis that fractal composition of images predicts 
human preference for (and benefits derived from) nature. 

1. Introduction 
The notion that exposure to the natural environment positively affects human well-being has been 

validated by studies showing measured cognitive, psychological, and physiological benefit. This 
article contains a brief review of the literature regarding human preference for natural environments, 
followed by a brief review of the literature regarding mathematical structure of stimuli. Then, 
preliminary results of an empirical study are presented. The study examines whether the mathematical 
properties of images may be predictors of human preference for those images. Further discussion of 
image analysis methods provides a theoretical link between these mathematical properties and human 
perception of the natural environment, and is followed by a more general review of restorative 
environment literature, with regard to this context. It is anticipated that use of the HarFA software will 
aid in timely completion of the experiments. 

2. Human Preference for Natural Environments 
Many studies have documented children’s preference for natural green spaces. These studies show 

that children’s favourite spaces are predominantly outdoors, in natural settings (eg. Department of the 
Environment, 1973; Korpela, 2002). A study by Sobel (1993) found that children generally preferred 
natural play spaces, when examining both British and Caribbean children. Lynch (1977) found that 
children universally appreciated vegetation, in an international study of the experience of growing up 
in cities. It has additionally been found that such natural settings, which are preferred by children, also 
have a beneficial effect on their well-being (Wells & Evans, 2003). This connection, between 
preference and well-being, will be discussed further, later in this article. 

3. Mathematical Structure of Stimuli 
Recent research has explored specific characteristics of the natural environment that may underlie 

its beneficial effect on humans. This work suggests mathematical explanations for the differing effects 
of natural and non-natural environments. 

The work of Field (1987) demonstrates a possibility for statistically characterizing images that 
draws a general mathematical distinction between the visual environments of the natural and non-
natural kind, with his finding that natural imagery possesses fractal-like properties. Taylor and his 
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colleagues (Taylor, Micolich, & Jonas, 1999; Taylor 2002) also report fractal properties, as a way of 
characterizing natural imagery, and as a predictor for appeal of (preference for) some types of artwork. 

Furthermore, Olhausen and Field (2000) suggest that such properties may provide insight into the 
human neurological systems associated with sensory processing. Hughes (2001) similarly suggests a 
relationship between the mathematical structure of preferred and beneficial stimuli, to neurological 
and physiological function. His work, addressing the structure of auditory stimuli, also suggests the 
importance of fractal like traits (i.e. scale invariant repetition and periodicity), and the prevalence of 
these traits in the natural environment (Gray, Krause, Atema, Payne, Krumhansl, & Baptista 2001). 

These studies suggest that the beneficial effects that are generally associated with exposure to 
nature may be more specifically associated with the mathematical structure of the sensory stimulus. 
Furthermore, distinct (fractal) characteristics of the natural image may be reflected in the neurological 
function of the human sensory system, resulting in a physiological basis for differing responses to 
natural and artificial environments. 

The psychological and cognitive effects, which are evident as natural environment responses, 
provide a means of testing the relationship between image structure and the human natural 
environment response. This study specifically examines a hypothesized relationship between image 
structure and preference of children, through the examination of the effects of image structure on 
preference ratings, for a series of greyscale images. The main hypothesis is that human preference 
rating for the images will be predicted by their image structure; that greater preference will be 
observed for those images that have the most natural statistical characteristics, independent of whether 
or not they are natural, non-natural, or computer generated. 

4. Participants 
The participants were children of similar socioeconomic status and geographical position (mean age 

of approximately 11). Data on personal background, physical activity, and daily exposure to nature 
were also collected. 

5. Independent Variables 
The images were either photographs of the natural environment, the non-natural (manmade) 

environment, or computer generated patterns. The images were intentionally difficult to recognize (the 
participants were told beforehand that they were “just patterns”). There were six examples in each 
category, representing a range of image structure within each category. The image structure 
characteristics used are statistical measures obtained through brightness (intensity) analysis, fractal 
dimension analysis, and wavelet analysis. 

6. Dependent Variable 
Preference ratings were obtained, according to a five point Likert scale, for all nineteen images, 

through one-on-one verbal interviews. 

7. Image analysis 
The fractal dimension values, used in this study, were obtained through an adaptation of the 

traditional “box counting” method. Traditional box counting yields a fractal dimension score that 
characterizes the properties of, for instance, the black area of a binary (black & white) image. The 
adapted method used in this study instead characterizes the properties of the border (i.e. between the 
black and white). 

Since the box counting method relies on binary (black and white) data, non-binary images must be 
converted through a technique known as thresholding. In this process, a threshold must be 
predetermined, as the intensity value (brightness) above which is essentially converted to white, and 
below which is converted to black, yielding a binary image. Since the images used in this study were 
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greyscale (non-binary) images with content across the complete range of intensity (brightness), fractal 
dimension values were obtained across the entire range of threshold values for each image, resulting in 
a fractal spectrum, with fractal dimension as a function of threshold value. It is characteristics of this 
spectrum that this study is concerned with; the mean, variance, and maximum of this spectrum was 
calculated for each image used in this study. 

The software used to perform the fractal analyses was HarFA, made available by Image Science 
Fundamentals (Zmeškal, O., Nežádal, M., & Buchnícek, M., 1999). 

Overall intensity (brightness) characteristics were also analysed, for each image. Mean intensity and 
intensity variance were calculated from the intensity histogram of each image. The composite intensity 
histograms for the images in all three categories showed similar statistical characteristics. Generally 
speaking, all images tended towards a relatively normal frequency distribution of intensity. 

8. Preliminary Results 
Significant correlation was found between mean preference rating and mean fractal dimension (p = 

0.049). Significant correlation was found between mean preference rating and maximum fractal 
dimension (p = 0.014). 

9. Discussion 
The findings of this study may support the notion that preference for nature may be more 

specifically associated with the mathematical structure of the sensory stimulus. Further study should 
include specific measures of cognitive functioning employed in previous restorative environment 
studies, along with measures of personal affect and physiological stress. 

There is prior evidence of a relationship between preference and the cognitive and physiological 
benefits. Many studies show the cognitive and physiological benefit of exposure to natural 
environment, in addition to psychological benefit described above (Ulrich et al 1990, 1991; Parsons et 
al 1998, Driver, 1976; Knopf, 1987; Schroeder, 1989). A study of unstressed subjects (Ulrich, 1981), 
that showed an effect of more positively toned emotional states, for exposure to nature scenes, also 
showed broadly consistent recordings of brain electrical activity of the subjects, suggesting that the 
individuals were more “wakefully relaxed” during exposure to nature (Ulrich, 1981). Additionally, it 
has been shown that surgical patients in rooms with windows looking out on a natural scene showed 
benefits, including shorter postoperative hospital stays, and requiring fewer potent analgesics, as 
opposed to patients in similar rooms, but with windows facing a brick building wall (Ulrich 1984). A 
study by Wells showed that cognitive functioning in children, following a move to a different home, 
was higher for those whose new homes had greater levels of nature nearby (Wells, 2000). Likewise, 
studies have shown both immediate and durational effects of exposure to the natural environment on 
cognitive functioning (Hartig, Mang, & Evans, 1991, Driver, 1976; Knopf, 1987; Schroeder, 1989) 

It has additionally been found that coherent autonomic response (e.g. skin conductance) to specific 
environmental stimuli can occur in the absence of recognition or conscious awareness of the elements 
(Ohman, 1986; Ohman et al., 1989). “Other studies have found that well defined emotional responses 
to stimuli (assessed by facial electromyography) can occur so rapidly that it is difficult to reconcile 
with a purely ‘controlled’ cognitive response perspective on humanenvironment interactions 
(Dimberg, 1990; Ulrich, 1991).” These findings eliminate the suggestion that people may be 
conditioned, through cultural influences, to develop positive associations with nature (e.g. Tuan, 
1974), as a sole mechanism in restorative environment theory. 

Theoretical bases for the positive psychophysiological effect of the natural environment have been 
widely published – most notably, Attention Restoration Theory (Kaplan & Kaplan 1989) and the 
affective (rather than cognitive) response model (Ulrich 1983) - both relying on the notion of 
fascination. However, neither model explicitly addresses the basis for fascination itself (i.e. the 
characteristics of a fascinative stimulus). Assumptions that have addressed this basis include: it is the 
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complexity of the natural environment that contributes to its ability to fascinate (Kaplan & Kaplan 
1989), and that the human species is genetically predisposed to respond, with “fascination,” to the 
form and structure of the natural environment (Ulrich 1983). 

Perspectives on such an evolutionary basis for the nature response often draw on the intuitive notion 
that humans’ long term evolution in natural environments must have resulted in some physiological 
and perhaps psychological ‘adaptation’ to natural, as opposed to urban, physical settings. Central to 
this argument is the position that humans have an unlearned predisposition to respond positively to 
natural content (e.g. vegetation, water) and to configurations characteristic of settings that were 
favorable to survival or ongoing well-being during evolution (e.g. Stainbrook, 1968; Appleton, 1975; 
Driver & Greene, 1977; Kaplan & Kaplan, 1989; Ulrich 1983; Orians, 1986). 

The evolutionary perspective has been furthered by speculation that natural content may be 
processed with relative ease and efficiency because the brain and sensory systems evolved in 6 (11) 

natural environments, in a parallel manner (Wohlwill, 1983; Hughes 2001). Because this 
evolutionary tuning is lacking for urban or built environments, encounters with such settings place 
greater demands on processing resources, and may overload the individual or require more coping or 
adaptation effort (Stainbrook, 1968). 

In summation, it seems possible that there exists a human response to repetition and periodicity, 
found within the natural environment in the form of visual stimuli. Additionally, perhaps due to the 
corresponding structure of the somatosensory cortex, as well as physiological function (Hughes 2001, 
Ivanov 1999), these naturally structured stimuli “resonate well” with the human mind and body, 
showing measurable effects. 

The results of this study suggest that there may be elemental characteristics of the natural 
environment that produce, for instance, the fascination response, and that quantitatively distinguish it 
from the built environment. This does not necessarily imply the ability to separate such a characteristic 
from the natural environment and effectively reproduce it within the artificial, built environment; a 
proposition carries extremely powerful philosophical implications. 

Towards a Physiological Basis 
Previous studies on this topic have not taken into account the variability of thresholding conditions 

that can greatly affect the fractal dimension value obtained, for images with information over the 
entire range of intensity, as is commonly processed by the human eye (Olhausen & Field, 2000). 

It is not surprising that intensity (brightness) characteristics did not show as a predictor for 
preference. Physiological aspects of the human visual system indicate a wide range of sensitivity to 
light intensity (with a more localized, focused sensitivity to color). The vast dynamic intensity range 
of natural images is managed by the human eye through adjustment of the iris, which controls the total 
amount of light admitted to the eye, and with neurons in the retina that do not directly register light 
intensity. Rather, they encode contrast, as a measure of the fluctuations in intensity relative to the 
mean level. This widely accepted contrast sensitive excitatory and inhibitory receptive field model of 
the human visual system suggests the relevance of a method of analyzing images according to 
threshold borders. 

In research on image encoding, Olhausen and Field (2000) have suggested that image compression 
algorithms may provide insight into the neurological processes that take place with human vision. 
They propose that nature has thus found solutions that are near to optimal in efficiently encoding 
images of the visual environment; that the visual system has organized itself to represent efficiently 
the sorts of images it normally takes in, which we call natural scenes. 

A clue to human neurological function may be rooted in the postulations of Horace Barlow 
(University of Cambridge), nearly 40 years ago - that the nervous system might be able to form 
representations of the underlying causes of images (Olhausen & Field, 2000). Therefore, a model for 
sensory function may involve fractal algorithms that probabilistically identify stimulus structures 
without providing a one-to-one representation. That is to say that with human image processing, we 
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process a mathematical compression of a visual image when we see things – allowing neural resources 
to be specifically directed at elements in the visual field, as desired, while maintaining a low cost 
understanding of the ambient environment. 
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1. Introduction 
Box-Counting method was used for evaluating of the fractal properties of the apple flesh texture. 

The method is often used to determine fractal box dimension of digitised images of fractal structures. 
Nežádal et al. (2001) and Buchníček et al. (2000) have implemented Box-Counting procedure in 
software called HarFA, which was developed on Institute of Physical and Applied Chemistry, 
Technical University of Brno in Czech Republic. HarFA analyses black&white images. Box-Counting 
method utilizes the covering fractal pattern with raster of boxes (squares) and than evaluating how 
many boxes NBW, NBBW = NB + NBW or NWBW = NW + NBW of the raster are needed to cover fractal 
completely, where: 

NB  - number of black squares, 
NW  - number of white squares, 
NBW  - number of black&white squares, 
NBBW  - number of black&white and black squares, 
NWBW  - number of black&white and white squares. 
Repeating this measurement with different sizes of boxes r = 1/ε will result into logarithmical 

function of box size r and number of boxes N(r) needed to completely cover fractal. The slopes of the 
linear functions 

 ( ) ( ) ( )rDKrN BWBWBW lnlnln += , (1) 

 ( ) ( ) ( )rDKrN BBWBBWBBW lnlnln += , (2) 

 ( ) ( ) ( )rDKrN WBWWBWWBW lnlnln += , (3) 
give DBW, DBBW and DWBW the fractal dimensions. DBW characterises properties of border of fractal 
pattern. DBBW characterises fractal pattern on the white background and DWBW characterises fractal 
pattern on the black background. 

2. Samples and storage properties  
Measurement was realized for apples of variety Topaz. Experimental measurements were realized 

during of apple storage from 27th October 2003 to 2nd March 2004, i.e. in the start and the finish of the 
storage. Thirty values of fractal dimension were evaluated for each sample and variant of fertilization. 
Together 240 experimental values of the fractal dimension were realized for all variants. The new 
samples of apples were used for each measurement. 

The storage was provided in the storage boxes at the temperature from 2°C to 3°C and 90% of the 
air moisture content. The measurement was realized for four variants A, B, C, K of the variety Topaz. 

3. Experimental measurement 
Apple samples were always cut on two half parts and the section of the depth 3-4 mm was cut from 

the middle part. Thirty area digital images were obtained from each sample section. The pores and the 
grains of the apple flesh represented a fractal object. Box Counting method was used for measurement 
of fractal dimension. Fractal dimension characterized influence of storage on the changing of the apple 
flesh structure. DBW, DBBW and DWBW fractal dimensions were determined for surfaces of the area 
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samples scanned by video microscope combined with color digital CCD camera GKB CS-8606S with 
the array of size 768 × 576 pixels and trinocular microscope MI XSZ 107.  

The frame grabber KAPA PLUS that provided the collaboration with PC digitised the images. The 
control software IMPOR‘99 was used for a camera to provide a pre-processing of the snapshots. The 
software HarFA 4.9.3 was used for digital filtering of images and establishing of fractal dimension. 
The digitised samples were adjusted on the size 768 × 576 pixels with the resolution 38 pixels/cm. The 
magnification forty times was obtained. The real area of scanned surface was 3,4 × 3,4 mm for each 
digital image. The snapshot of the original apple flesh sample of variety Topaz, variant A is 
represented in the Figure 1a. The processing of the snapshot by intensity tresholding is shown in the 
Figure 1b. The fractal dimension of the flesh structure was evaluated from the equations (1,2,3). 

4. Obtained results and discussion 
Fractal dimensions DBW, DBBW and DWBW were determined from 27 points equivalent 27 raster used 

on the each snapshot of the samples. The values 1.67963, 1.90499, 1.82381 from the equations shown 
below represents the experimental values of the fractal dimensions DBW, DBBW and DWBW of the flesh 
structure of the variety Topaz, variant A shown in the Figure 1 at the beginning of storage. R is a 
correlation coefficient. The values in the brackets are standard deviations of the slope and intercept in 
the regression model. 

ln NBW =  1.67963ln (r) (± 0.03729) + 11.74606 (± 0.11915); R = 0.98831 
ln NBBW = 1.90499ln (r) (± 0.00846) + 12.62747 (± 0.02651); R = 0.99951 
ln NWBW = 1.82381ln (r) (± 0.01484) + 12.31104 (± 0.04651); R = 0.99835 
The same procedure was realized for all 240 snapshots of the samples and the arithmetical averages 

of the fractal dimensions were calculated. Each average was calculated from thirty values. The 720 
experimental values of fractal dimensions were used together. 

 

 
Figure 1  Original snapshot of apple flesh and the processing of the snapshot by HarFA's intensity 
tresholding. Variety Topaz, variant A at the beginning of storage (40 times magnification) 

 
The graphical representation of the regression equations for one evaluation of the trinity of the 

fractal dimensions of the apple flesh of variety Topaz, variant A at the beginning of storage (from 
Figure 1) is shown in the Figure 2. DBW characterized the properties of the border of black and white 
colour, i.e. the border of pores and grains of the fractal apple flesh. Its value was the smallest from the 
trinity of dimensions. DBBW characterized the properties of the grains of the apple flesh structure. Its 
values were the highest from all. It means that the grains mesh the most part of the apple flesh 
structure. DWBW characterizes the properties of the pores of the apple flesh and its values were between 
DBW and DBBW. 
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Figure 2 Determination of fractal dimensions  DBW, DBBW and DWBW by Box Counting method 
(software HarFA). Variety Topaz, variant A at the beginning of storage. 

 
The study of influence of long period storage on the fractal dimension and influence of variants of 

fertilization in dependency on the time on the fractal dimension was also realized by statistical 
methods. Analysis of variance was used after data test of normality (Shapiro-Wilks’W test) and data 
test of variance correspondence (F-test). Statistical calculations were realized by software Statistica 
ver. 6.0. Analysis of variance of fractal dimension DBBW of variety Topaz for factor variant of 
fertilization and time of storages is shown in the Figure 3. 

 

 
Figure 3 Analysis of variance of fractal dimension DBBW of variety Topaz for factor variant of 
fertilization and time of storage. F is F-statistic of the F distribution and p is probability level. 

5. Conclusion 
The method of fractal analysis of the apples of the variety Topaz was used at the study of the apple 

flesh structure which is changing in the period of the long term storage in standard conditions. The 
fractal dimensions of the apple flesh express the degradation of apple structure caused by changing of 
representation of the pores and grains during the period of storage. The flesh structure transforms 
during long term storage in consequence of maturing and the chemical processes, which are passing 
inside.  

The effect of the variant of fertilization and the time of storage on the fractal dimensions DBW, DBBW 
and DWBW was proved by method of analysis of variance. DBBW dimensions, which characterised the 
properties of the grains of the apple flesh structure decreased in dependency of time of storage. DWBW 
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dimensions, which characterises the properties of the pores of the apple flesh structure increased in 
dependency of the time of storage. 
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Abstract 
Novel method for the global characterization of time series, based on the calculation of fractal 

dimension of a two-dimensional recurrence plots is proposed. The method is used for the 
characterization of differences between regular and chaotic systems and for the analysis of human 
electrocardiogram. 

1. Introduction 
There is a long history of using image analysis to determine the morphology of a system associated 

with an image [1]. Recently, techniques based on concepts from the field of artificial life have been 
used for image analysis [2]. The measures of complexity that they use involve fractal dimension and 
percolation.  

The concept of a fractal dimension to describe structures, which look the same at all length scales, 
was first proposed by Mandelbrot [3]. Although in strict terms, this is a purely mathematical concept, 
there are many examples in nature that closely approximate a fractal object, though only over 
particular ranges of scale. Such objects are usually referred to as self-similar to indicate their scale-
invariant structure. In simple terms, the common characteristic of such fractal objects is that their 
length (if the object is a curve, otherwise it could be the area or volume) depends on the length scale 
used to measure it, and the fractal dimension tells us the precise nature of this dependence. 

Our aim in this study is to apply the concepts of fractals to global characterization of time series 
through the fractal structure of their two-dimensional images – recurrence plots. 

2. Visual recurrence analysis method 
Recurrence Plots (RPs) are relatively new technique for the qualitative assessment of time series 

[4]. With RP, one can graphically detect hidden patterns and structural changes in data or see 
similarities in patterns across the time series under study. The fundamental assumption underlying the 
idea of the recurrence plots is that an observable time series is the realization of some dynamical 
process, the interaction of the relevant variables over the time. Because the effect of all the other 
(unobserved) variables is already reflected in the series of the observed input, one can recreate a 
topologically equivalent picture of the original multidimensional system behaviour by using the time 
series of a single observable variable [5]. Furthermore, the rules that govern the behaviour of the 
original system can be recovered from its output. 

 Recurrence plots are intricate and visually appealing [6]. They are useful for finding hidden 
correlations in highly complicated data. Because they make no demands on the stationarity of a data 
set, RPs are particularly useful in the analysis of systems whose dynamics may be changing. The use 
of recurrence plots in time-series analysis has become more common in recent years, particularly in 
the area of physiology, for instance, they have been used to discern between “quiet“ and “active“ 
breathing in laboratory rats [7] or to study neuronal spike trains in cats [8]. RPs have been also used in 
mathematical problems primarily to identify transition points in non-stationary data sets [9], and in the 
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area of molecular dynamics simulations as a tool for the detection of transients and both linear and 
nonlinear state changes.  

 An RP is a two-dimensional representation of a single trajectory. The time series spans both 
ordinate and abscissa and each point (i, j) on the plane is shaded according to the distance between the 
two corresponding trajectory points yi and yj. In an unthresholded RP (UTRP) the pixel lying at (i, j) is 
color-coded according to the distance, while in a thresholded RP (TRP) the pixel lying at (i, j) is black 
if the distance falls within a specified threshold corridor and white otherwise. RPs are symmetrical 
along the x = y axis, where each point is plotted against itself, and this diagonal roughly represents 
time [10]. Figure 1 shows UTRPs generated from four different data sets: (a) a time series 
electrocardiogram, (b) a time series of a Brownian motion, (c) a time series of a Dow Jones index. The 
colors on these plots range from white for very small spacing to dark blue for large inter-point 
distances, as shown on the calibration bars in the figure. With this in mind, the sine-wave RP is 
relatively easy to understand; each of the “blocks“ of colour simply represents half a period of the 
signal. The RP generated from a chaotic data set is far more complicated, although it too has block-
like structures resembling to what might be expected from a periodic signal. For random signal, the 
uniform (even) distribution of colours over the entire RP is expected and the colours on the UTRP for 
the time sequence “deepen“ away from the main diagonal.  

 

 
a b c 

Figure 1  Recurrence plots of (a) a time series electrocardiogram, (b) a time series of a Brownian 
motion, (c) a time series of a Dow Jones index. On the right side of each recurrence plot is shown 
calibration bar showing its colour range. 

 

The basic idea behind the interpretation of the RPs is simple: if the underlying signal is truly 
random and has no structure, the distribution of colours over the RP will be uniform, and so there will 
not be any identifiable patterns. If, on the other hand, there is some determinism in the signal 
generator, it can be detected by some characteristic, distinct distribution of colours. The main 
advantage of the recurrence plots over another widely used techniques as for example Fourier analysis, 
is that they preserve both temporal and spatial dependence in the time series. Even though Fourier 
analysis reveals the distribution of spectral frequencies, it does not show how self-similar, resonant 
frequencies are patterned as a function of time. Yet, RP is mostly a qualitative tool and the precise 
meaning of the patterns is unknown. 

 Recurrence plots of the obtained time series from the DRP simulations we performed, were 
created with the program Visual Recurrence Analysis (VRA) provided by E. Kononov [11]. In VRA, a 
one-dimensional time series from a data file is expanded into a higher-dimensional space, in which the 
dynamic of the underlying generator takes place. This is done using a technique called "delayed 
coordinate embedding", which recreates a phase space portrait of the dynamical system under study 
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from a single (scalar) time series. To expand a one-dimensional signal into an m-dimensional phase 
space, one substitutes each observation in the original signal X(t) with vector 
 y(i) = {x(i), x(i - T), x(i - 2T), ..., x(i - (d - 1)T)}  (1) 
where i is the time index, d is the embedding dimension and T represents the time delay. As a result, 

we have a series of vectors 

 Y = [y(1), y(2), y(3), ..., y(N - (d - 1)T)]  (2) 
where N is the length of the original series. Using T = 1 merely returns the original time series; one-
dimensional embedding is equivalent to no embedding at all. Proper choice of the time delay and the 
embedding dimension is said to be critical to this type of phase space reconstruction. Only correct 
values of these two parameters yield embeddings that are guaranteed to be topologically equivalent to 
the original (unobserved) phase-space dynamics [5].  

Once the dynamical system is reconstructed, a recurrence plot can be used to show which 
vectors in the reconstructed or original space are close and far from each other. VRA calculates the 
Euclidean distances between all pairs of vectors and codes them as colors.  

Essentially, UTRP is a color-coded matrix D, where each [i][j]th entry is calculated as the 
distance between vectors Y(i) and Y(j) in the reconstructed series 

 222 ))1())1(((...))()(())()(( dmjxdmixdjxdixjxixDij −−−−−++−−−+−=   (3) 

in the case of d = 1  
 )()( jxixDij −=   (4) 

After the distances between all vectors are calculated, they are mapped to colors from the 
predefined colour map and are displayed as coloured pixels in their corresponding places.  

3. Calculation of fractal dimension 
The images were analysed using program HarFA 5.1 provided by O. Zmeskal [12] based on the 

improved box counting method where binary images were covered with different grids (box length ε), 
and the number of boxes N(ε) required to cover the structures of the images is recorded 

.  
 
If an object is fractal, N(ε) increases according to the relation 

   (5) DCN εε =)(

where D is fractal dimension and C is a constant. From this equation the fractal dimension can be 
obtained as  
 )}log(/))(log({lim

0
εε

ε
ND −

→
= .  (6) 

The HarFA code is based on counting of squares (black, white, and partially black) from a squared 
network behind the fractal figure. The difference between calculated and exact values of fractal 
dimensions obtained using HarFA is very small (e.g. for Sierpinsky triangle the error is less than 0.2 %). 
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4. Comparison of regular and chaotic systems 
Determinism in the mathematical sense means that there exists an autonomous dynamical system, 

defined by a first order ordinary differential equation  in a state space Γ ⊂ Rd, which we 
assume to be observed through a single measurable quantity h(x). The system thus possesses d natural 
variables, but the measurement is usually nonlinear projection onto a scalar value. Deterministic chaos 
offers an interesting explanation for the emergence of aperiodicity and unpredictability. Since rather 
simple systems exhibit chaos, one is lead to use nonlinear time series methods to verify whether such 
source of unpredictability is underlying a given observation. In fact, the concept of deterministic low-
dimensional chaos has proven to be fruitful in the understanding of many complex phenomena despite 
the fact that very few natural systems have actually been found to be low-dimensional deterministic in 
the sense of the theory. Deterministic chaos is not the only, and not even the most probable source of 
aperiodicity. The superposition of a large number of active degrees of freedom can produce extremely 
complicated signals, which may not be distinguishable from randomness. Stochasticity in the sense 
that a system is driven by processes whose dynamics are too complex to be inferred from the 
information stored in the observations is the most frequent source of unpredictability in open systems 
and field measurements. 

)(
.

xx f=

To investigate the capabilities of this method we have used three time series, sine function – 
prototype of regular deterministic signal, the same signal slightly perturbed with white noise, and 
white noise itself. In Figure 2 are shown the series together with their recurrence plots produced using 
VRA program. These plots (images without the frames, bars and captions, of course) were then 
analyzed using HarFA program. The obtained fractal dimensions are shown in Figure 3. As can be 
seen the fractal dimensions in this case correlate with the complexity of the signals. 

 

 
  

 
a b c 

Figure 2  Time series and recurrence plots of (a) time series derived by sampling the function sin(t), 
(b) a time series of a sine perturbed with white noise signal, (c) a time series of a random signal 
(white noise). On the right side of each recurrence plot is shown calibration bar showing its colour 
range. 
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Figure 3 Fractal dimensions of a recurrence plots of the corresponding time series. 

 

5. Applications in heart physiology 
In the mid-1880's Ludwig and Waller discovered that the electrical activity of the heart could be 

monitored through the skin. Their device, called a capillary electrometer, used sensor electrodes and 
magnets to generate an electrical field. A capillary tube with fluid was placed in the field. As current 
passed through the electrodes, the field increased and decreased causing the fluid in the tube to bounce 
up and down. This device, as cool as they probably thought it was, was far too crude for clinical use. 
Einthoven devised a clever system for recording the same electrical activity on light-sensitive paper. 
Noticing a recurring pattern of movement, Einthoven named the prominent waves alphabetically, P, Q, 
R, S, and T the P-wave, representing the impulse across the atria to the A/V node; The QRS 
representing the impulse as it travels across the ventricles; the T-wave, representing the repolarisation 
of the ventricles (Figure 4). 

 
 

Figure 4 Anatomy of the heart with assignment of P, Q, R, S, T, and P waves. 
 

Inter-beat intervals of a two groups of healthy subjects, young (mean age 27 yr.) as well as 5 old 
(mean age 74 yr.) were analysed in our recent study [13]. A. L. Goldberger, Harvard University, made 
these data available. Subjects lay supine for 120 min while continuous ECG signals were collected. 
All subjects remained in an inactive state in sinus rhythm while watching the movie ”Fantasia” 
(Disney) to help maintain wakefulness. 
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Figure 5 Recurrence plots corresponding to ECG of a young (a) and an old person (b). 

 
The continuous ECG was digitised at 250 Hz. Each heart-beat was annotated using an automated 

arrhythmia detection algorithm, and each beat annotation was verified by visual inspection.  
The R-R interval (inter-beat interval) time series for each subject was then computed and using 

them we have constructed recurrence plots as those shown in Figure 5. 
Fractal dimensions of these plots are equal to 1.61 and 1.82 for old and young persons, respectively. 

This reflects the fact that the data obtained from old subjects have a more deterministic origin and the 
data obtained from young subjects are more random and complex. The complex dynamics of the 
healthy heart-beat arise from numerous coupled control systems and feedback loops that regulate the 
cardiac cycle on different time scales. Aging has a profound impact on many of the interacting neural 
and endocrine mechanisms that regulate heart rate, which may explain why the heart-rate time series 
loses much of its complex, irregular behaviour. This suggests that the distinctive patterns evident in 
recurrence plots of inter-beat intervals are empirically correlated with the age of the studied subjects, 
as they diagrammatically represent the complex dynamical interaction of the sympathetic and 
parasympathetic nervous systems. 

6. Conclusions 
In this study we have for the first time demonstrated fractal nature of recurrence plots and used 

fractal dimension of these images for the interpretation of various time series. 
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Abstract 
In order to characterize a possible difference in the organization of U373 astrocytoma cells under 

different culture medium (DMEM or RPMI), we have obtained the fractal dimension (FD) of cell 
cultures using HarFA image analysis in the whole range of thresholding conditions 
(http://www.fch.vutbr.cz/lectures/imagesci/). The obtained results showed a significant increase in the 
astrocytoma FD depending on the time culture but not on the growth medium. We may conclude that 
the increased cellular organization and complexity reached in astrocytoma cultures with time, deduced 
from FD, is not related to the culture medium. 

1. Introduction 
Fractal geometry is based on the observation that structures growing apparently according to 

stochastic processes are not really as disordered as they appear; thus, these structures may be 
characterized using fractal dimension (FD) as a quantitative parameter (Fernández and Jelinek, 2001). 
One of the advantages of fractal analysis is the ability to quantify the irregularity and complexity of 
objects. In this sense, a tissue has been described as a self-organizing cellular system with fractal 
dynamics, where an increase in the FD has been related to aggregation and cell expansion, and a 
decrease in the FD with cellular differentiation (Waliszewski and Konarski, 2001).  

DMEM and RPMI are the habitual media used for U373 astrocytoma cell cultures. The aim of our 
work is to analyse the possible influence of the culture medium in the complex organization of 
astrocytoma cell cultures using the FD as a discriminative parameter. 

 

 
Figure 1 Astrocytoma cultures in RPMI medium at time 0h and 24 h, before (A, B) and after 
processing (C, D) with ImageJ, respectively. 

 
Obtaining the fractal dimension from image analysis is not a trivial procedure because it depends on 

the particular image thresholding. To avoid a biased decision, we have selected the FD corresponding 
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to the slope change detected in the whole range of thresholding conditions, a very useful processing 
tool implemented in HarFA fractal analysis software.  

2. Methods 
U373 human astrocytoma cells were propagated in RPMI (with Glutamax) or DMEM (Gibco) 

media, both supplemented with 10 % (v/v) heat-inactivated fetal calf serum (Linus) and Penicillin-
Streptomycin (Sigma). RGB images were taken 24 hours after seedling (time 0h) and twenty-four 
hours later (time 24h) for each experimental group (n = 5). Images were processed (RGB to 8-bit 
conversion and background subtraction) using ImageJ software (http://rsb.info.nih.gov/ij/) (Figure 1). 
After this, a FD analysis was carried out from the whole range of thresholding conditions using HarFA 
v4.9 software (http://www.fch.vutbr.cz/ lectures/imagesci/); we selected the FD corresponding to the 
slope change as indicated in Figure 2. Statgraphics Plus 5.1 was used as the statistical software.  

 

 
Figure 2 A: HarFA fractal spectrum; the red arrow indicates the change in the slope where the FD 
is selected. B: thresholding related to FD in A.  

A B

 

3. Results and Conclusion 
Figure 3 shows the obtained individual values of FD corresponding to each experimental group. A 

significant increase was only detected when comparing the mean (±σ) FD related to time of culture 
(DMEM, 0h vs 24h: 1.54±0.11 vs 1.76±0.10, p < 0.05; RPMI 0h vs 24h: 1.60±0.07 vs 1.78±0.02, 
p < 0.05). 

 

 
Figure 3  Fractal dimension (FD) for each image and group 

 
From the obtained results, we conclude that the increased cellular organization and complexity 

reached in astrocytoma cultures with time, deduced from FD image analysis, is not related to the 
culture medium. 
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Abstract 
We present a methodological work for testing and applying the use of both Fractal Spectrum (FS) 

and Fractal Dimension (FD) to discriminate and quantify, respectively, cover and structure changes 
along time in a relic Abies pinsapo Boiss. (Pinaceae) forest located at Andalusia (southwestern 
Mediterranean Basin). To achieve this, plots at different elevation were selected from Orto-rectified 
aerial photographs of the same locations taken at different dates (from 1957, 1991 and 2001). The 
selected images were analyzed using HarFA software (http://www.fch.vutbr.cz/lectures/imagesci/) in 
the whole range of thresholding conditions, which allows us to use the Fractal Spectrum (FS) as a 
criterion for forest cover delimitation and FD characterization. In order to test the accuracy of the 
method, image thresholding was also determined by mean of a conventional supervised classification 
of the aerial photographs using ImageJ analysis software (http://rsbweb.nih.gov/ij/). The obtained 
results showed FS analysis might improve the criterion of visual delimitation of forest cover in 
landscape digital images and, thus an optimal FD characterization. Finally, the obtained FD provided 
an adequate parameter for detecting the increase in forest cover and vegetation structure diversity in 
image time analysis series. 

1. Introduction 
Fractal Dimension (FD) [1] is a useful tool to quantify the inherent irregularity of nature. Fractals are 

self-similar and infinitely detailed, and the related FD is an index of its morphometric variability and 
complexity; moreover fractal analysis has been applied to a variety of natural objects [2] and the FD 
may be obtained even if the object is not a fractal. Thus, among the different methods of FD 
calculation, the box-counting method is the most appropriate in landscape structural FD estimation 
because it can be apply to fractal patterns with or without self-similarity.  

Potential applications of fractal geometry are not limited to quantifying natural lines and surfaces. 
Fractal geometry may produce new methods for estimating stand density, predicting forest succession, 
and describing the form of trees. It is shown that the fractal dimension of tree crowns is a good 
indicator of various tree and site features such as species tolerance, crown class, and site quality [3]. 
The aim of our work is to analyse the possible use of Fractal spectrum (FS) in image classification and 
FD as indicator of stand complexity in Orto-rectified aerial photographs from 1957, 1991 and 2001of 
relic Abies pinsapo Boiss. (Pinaceae) forest from Andalusia in the southwestern Mediterranean Basin. 

2. Material and Methods 
Digital panchromatic aerial photographs from 1957, 1991 and 2001 were used in order to analyse 

changes in forest coverage and structure in the last 50 years. ArcView GIS 3.2 (ESRI) was used for 
selecting, scaling and geographic coordinate determination of plots (six plots of 17.9 ha -
550 m × 325 m - from each image). A digital map scale 1:10000 was simultaneously used to confirm 
the correct selection of the plot and to determine the mean elevation in metres at sea level (thereafter 
m a.s.l.).  

FS and FD of the digitalized images were obtained using the fractal functions implemented in HarFA 
5.1 software (http://www.fch.vutbr.cz/lectures/imagesci/). A deep computational fractal analysis of 
images may be easily achieved using HarFA, because it includes three categories of the necessary 
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boxes for the box-counting method: NW, which contains only the white background; NB, which covers 
only the black segmented object; NBW, which covers the border of the black object (e.g., those boxes 
which contains at least part of the black object). According to this counting mechanism it obtains not 
one but three FDs (FDW, FDB, FDBW). Another two FDs (FDB+BW, FDW+BW) can also be computer from 
NB+BW (the sum of NB and NBW) and NW+BW (the sum of NW and NBW). The FS in the whole range of 
thresholding conditions, also implemented in HarFA, was applied to the selected images in order to 
test the FS as a criterion for thresholding. To confirm this, a conventional image analysis of the plots 
was carried out by independent observers (experts in the study area and vegetation type) using the 
computerized-assisted image analysis software ImageJ (http://rsbweb.nih.gov/ij/), where the pixel 
intensity range and the fraction area of Abies pinsapo forest was obtained avoiding shadowy zones 
corresponding to rocks and others topographical irregularities. In addition, the pixel intensity value 
obtained after interpolation in the FS graph was also used as the conventional maximum threshold 
delimitation at each image to confirm that FS graphical interpolation is an adequate approach for 
thresholding and FD relationship (Figure 1); to obtain an appropriate FD parameterization, the box-
size range was selected after a single slope analysis.  

The pixel intensity obtained using both approaches (conventional and FS thresholding) was 
correlated by linear regression; a statistical significance was tested for p < 0.01 [4]. In addition, one-
way ANOVA was applied to test FD differences in the time series [5]. 

 
 

 
Figure 1 FS (left column) of the selected aerial images (middle colum) at different dates. The 
selected FD (red horizontal line at left column) was appropriated since it corresponds to an adequate 
-independently selected-  forest covering threshold (right column). 

3. Results and Discussion 

3.1. Conventional and FS thresholding relationship 
Figure 1 shows that the more adequate FD for each image corresponds to the inflexion point of the 

FS curve related to FDB+BW, because the interpolated pixel intensity value may be used as an 
appropriate thresholding value for forest covering. Under this value, the pixel range includes the most 
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darkness values (only a mosaic from black and white spots was obtained) and, thus, FDB+BW is too 
small. Over the selected interpolation point, the range of pixel intensities included is too large, and the 
forest patches will disappear by overlapping, where the FDB+BW reached a maximum. This visual 
transition is well noticeable when FS is running in HarFA. The critical inflexion point may be also 
easily detected because just over this point is when the FDB+BW (blue line in Figure 1) value start to be 
different to the FDBW value (green line in Figure 1), the functional meaning corresponding to the limit 
of the forest cover; so, the suitable criterion to determine both the FD and the corresponding pixel 
range is the first FDB+BW value higher than FDBW value. Figure 2 shows the linear regression between 
the values obtained from conventional (visual) and FS thresholding approaches (p < 0.01, R2 = 0.79, 
n = 18). Thus, we can assume that the FDB+BW at this threshold is a representative parameter of the 
forest stand complexity. 
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Figure 2 Linear regression performed between the threshold obtained from visual and FS 
delimitations (p < 0.01, R2 = 0.79, n = 18). 
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Figure 3 Final (tendency analysis) of the FD obtained for 1957 (empty circles), 1991 (grey circles) 
and 2001 (black circles).  
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3.2. FD as indicator of forest change 
Significant differences were found between the FD and the corresponding dates (Figure 3). The FD 

from 1975 plots was 1.33 ± 0.08 (mean ± standard deviation), which was lower than the obtained at 
1991 and 2001 images: 1.51 ± 0.17 and 1.56 ± 0.11 (p < 0.05 and p < 0.01), respectively; however, 
statistically significant differences were not found between 1991 and 2001 plots. Within dates, it 
appears to be a fall in the FD at those plots located at upper elevation (m a.s.l.). These results suggest 
that the increased forest cover and vegetation structure diversity reached in the last 50 years can be 
detected after image FD analysis. In addition, and as stated above, FS may improve the criterion of the 
forest cover visual delimitation. Because radiometric attributes of images differ among dates, and this 
radiometric correction is difficult and not at all cases reliable and useful, we consider that the 
independent classification of each image by mean of a quantitative approach, as the Fractal Dimension 
Spectrum analysis implemented in HarFA, complete and improve any conventional (as visual) criteria.  
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1. Introduction 
Many natural structures cannot be described by conventional methods, because they are complex 

and irregular. Relatively a new approach is the application of fractal geometry [1]–[3]. This geometry 
is successfully used in science, but an application in industry is sporadic and experimental only. 
However, the fractal geometry can be used as a useful tool for an explicit, objective and automatic 
description of production process data (laboratory, off-line and potential on-line).  

The data having complex and structured character can be also met during a glass manufacturing. 
The data may have a form of digitalized pictures, time series (progressions) or a topologically one-
dimensional interface (especially a surface roughness). When analysing this data, it is suitable to use - 
in addition to classic mathematical statistics - modern tools of the fractal geometry expressing the 
complexity degree of structured data by means of a single number, the fractal dimension [1]–[3]. 

A use of the fractal dimension and statistic tools together forms an interesting and powerful tool for 
complex data quantification, for a poor quality source searching, a production optimalization and a 
non-stability of production process subsystems searching. 

Now, there are tools application possibilities for monitoring for three basic data format types: 
digitalised photos, time series and topological one dimension dividing lines (especially surface 
roughness) [5]–[9]. On this account, we are developing three off-line softwares that can be converted 
into on-line control systems in the future. The software tools use mathematical statistics and fractal 
geometry. They are tested in an off-line classification of surfaces and defect pictures, in a description 
of time series, which were obtained from outputs of a glass production control system, for evaluation 
of metal surfaces (iron aluminides in comparison with the carbide-nickel steel) in contact with the 
glass melt as well as changes of their quality and for quality control of window glass sheet (an 
objectification of the corrugation test). 

The following article demonstrates possibilities of the fractal geometry with combination of statistic 
tool for the evaluation of 2D pictures of surface defects - structures of the hole cracks in costume 
jewellery. Software Matlab 6.5 and HarFA 4.0 [4] were used for these experimental evaluations. 

2. Methods of analyses 
The explicit, objective and automatic description of images complexity can be made by different 

methods both statistic and fractal dimension. Only some of the possibilities are presented below.  

• The process of description has five steps practically: 
• Preparing of samples - structure must be visible, the costume jewellery is cut, Figure 1A. 
• Taking digital photographs. Photos of the hole cracks in costume jewellery are from an electronic 

microscope, Figure 1B (it is possible obtain “classic” photographs and they scan). 
• Software preparation of the digital photographs, Figure 1C (cutting of the photographs, because 

only some parts of the photos are important for analysis). 
• Analyses of the images. 
• Evaluation analyses results. 
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Digital image is a matrix (or matrixes) of pixels (rectangular array of points, Figure 1D). Pixels can 
reach different numbers, which depend on the used format of digital images. The pixels have numbers 
between 0 (black) and 255 (white) for the grey 8-bit palette bitmap and the bitmap has only one 
matrix. (Colour bitmap has 3 matrixes for RGB colour model – one matrix of red, green and blue 
colour.) 

Figure 1C shows two typical poor quality surfaces of costume jewellery holes. The cutting C-1 has 
deep cracks and C-2 has a thin structure. 

  
Figure 1 Preparing of samples, taking photographs, software preparation 

2.1. Histogram 
An evolution of a structure of the bitmap is possible by the statistical description of a histogram, 

Figure 2. Modus, median, average, range, standard deviation and other statistic tools can be used 
easily.  

A suitable method is the histogram cut off on 5% level and the method describes the image by a 
single number. The analysis computes a width 90% of all pixels value of the histogram from an 
average value of the image, Figure 2. 

The method is very sensitive to shadow, that can occur in the hole cracks. The analysis is easy, but 
describes all defects, cracks, shadows and structure together. 

2.2. Thresholding 
Next analyses are based on a technique called "thresholding", that transforms grey or colour image 

object into black & white (binary) one. The binary image can be determined from the grey 8-bit palette 
bitmap, where black are all pixels which fulfil condition e.g. 0 = black <= 100 and all the other pixels 
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become white (100 < white <=255), Figure 3. It means, that all pixels lesser than or equal to the 
threshold 100 are black and greater than 100 are white. (More than one threshold can be used or the 
technique for matrixes of colour images can be used too.) 

 
Figure 2 Histogram cut off on 5% level 

 

 
Figure 3 Thresholding of grey images 

 
The procedure of thresholding can be used for all thresholds of the grey image, 256 binary images 

are obtained. An analysis is done for all binary images and as far the analysis produces single number 
classifying a binary image, a spectrum of dependence between single number and threshold is given 
(e.g. Figure 4). 

Thresholds between 50 and 150 are suitable for the images of the hole cracks, because binary 
images, obtained by these thresholds, show the best structure of the surface. Thresholds between 10 
and 50 show the large cracks. Binary images produced by the thresholding with thresholds over 150 
contain shadow.  

HarFA e-journal http://www.fch.vutbr.cz/lectures/imagesci 



 V. Hotar, F. Novotny/ HarFA - Harmonic and Fractal Image Analysis (2006), pp. 101 - 109 104 

 
Figure 4 Percentage of black pixels of binary images spectrum 

2.3. Percentage of black pixels 
The analysis is based on computation of percentage of black pixels in binary images – the method 

computes number of black pixels in percents. It is supposed: a greater count of black pixels represents 
a greater complex structure and more defects. 

A spectrum of dependence between percentage of black pixels of binary images and thresholds is in 
Figure 4. The analysis is easy, but describes all defects, cracks, shadows and structure together. 

 
Figure 5 Pixels on boundary crack. 

2.4. Percentage of deep cracks 
The method is suitable for detection of relatively large and single cracks and defects. The method 

computes percentage of pixels with neighbouring pixels of the same value. The analysis searches 
black pixels (value 0) in a binary image, which have five or more neighbouring black pixels. The 
black pixels represent defect, structure, cracks, etc. Especially large cracks and defects contain black 
pixels with five or more neighbouring black pixels. Figure 5 shows part of boundary crack. Black 
pixel in Figure 5A has five neighbours and in Figure 5B has 8. 

Figure 6A shows spectrum of dependence between percentage of black pixels with five or more 
neighbouring black pixels of binary images and thresholds. For detection of large hole cracks in 
costume jewellery thresholds from 10 to 50 are the most suitable, Figure 6B. For the threshold 50, the 
cutting C-1 has more single cracks and defects, numerically: T50_C-1 = 3.17% than the cutting C-2, 
numerically: T50_C-2 = 0.8%.  
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Figure 6 Percentage of black pixels with five or more neighbouring black pixels spectrum. 

2.5. Box dimension 
The software HarFA 4.0 [4] is used for the analysis and software tools developed in Matlab 6.5 

makes data evaluation. 

The box counting method is shown in [2] and based on fractal geometry. The analysis describes 
structure by single number: the box dimension DB. The box counting method works by laying meshes 
of different sizes r and then counting numbers of boxes N needed to cover a binary image (Figure 7A) 
completely (Figure 7B, C). The number N(r) of boxes needed to cover the structure is given by a 
power law: 

  (1) BDrconstrN −⋅= .)(
DB is the box dimension. Logarithmic dependence between log2N(r) and log2r is called Richardson-

Mandelbrot plot (Figure 7D). The box dimension (that estimate fractal dimension) can be determined 
by slope s of the regression line in Figure 7D: 

 r
rN

BDs
log

)(log
Δ

Δ
−==

 (2) 
The box dimension is multiplied by 1000 for a better confrontation.  

The fractal spectrum (that was discovered in project HarFA) of the cuttings C-1 and C-2 are shown 
in Figure 8. The box dimensions over threshold level 150 are similar, because over the value an 
influence of shadow is significant. Results of analysis for threshold level 120 are: DB_C-1 =1429.6 (C-1) 
and DB_C-2 = 1562.4 (C-2), where the higher value represents greater complexity of the structure in the 
image. The cutting C-2 is more structured than the C-1 and box dimension quantifies the structures.  
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3. Results 
The most suitable methods for describing of structures of the hole cracks in costume jewellery box 

dimension and percentage of deep cracks counting appear. Figure 9 and 10 show a selection of results. 
For whole analysis with classification to quality class both methods must be use.  

  

  
Figure 7 Box counting method. 
 

 

 
Figure 8 Fractal spectrum. 
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4. Conclusion 
Photos of structures can be described by the statistic analysis and the fractal dimension. 33 images 

were analysed and we found out, that percentage of deep cracks and box dimension are the most 
suitable for the experimental evaluation of hole cracks in costume jewellery, because two types of 
defects can be met in the hole: deep cracks, a thin structure. The box dimension is specialized for the 
thin structure and the analysis of percentage of deep cracks is specialized for the deep cracks, which is 
better for the explicit evaluation. 
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