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Abstract 
Novel method for the global characterization of time series, based on the calculation of fractal 

dimension of a two-dimensional recurrence plots is proposed. The method is used for the 
characterization of differences between regular and chaotic systems and for the analysis of human 
electrocardiogram. 

1. Introduction 
There is a long history of using image analysis to determine the morphology of a system associated 

with an image [1]. Recently, techniques based on concepts from the field of artificial life have been 
used for image analysis [2]. The measures of complexity that they use involve fractal dimension and 
percolation.  

The concept of a fractal dimension to describe structures, which look the same at all length scales, 
was first proposed by Mandelbrot [3]. Although in strict terms, this is a purely mathematical concept, 
there are many examples in nature that closely approximate a fractal object, though only over 
particular ranges of scale. Such objects are usually referred to as self-similar to indicate their scale-
invariant structure. In simple terms, the common characteristic of such fractal objects is that their 
length (if the object is a curve, otherwise it could be the area or volume) depends on the length scale 
used to measure it, and the fractal dimension tells us the precise nature of this dependence. 

Our aim in this study is to apply the concepts of fractals to global characterization of time series 
through the fractal structure of their two-dimensional images – recurrence plots. 

2. Visual recurrence analysis method 
Recurrence Plots (RPs) are relatively new technique for the qualitative assessment of time series 

[4]. With RP, one can graphically detect hidden patterns and structural changes in data or see 
similarities in patterns across the time series under study. The fundamental assumption underlying the 
idea of the recurrence plots is that an observable time series is the realization of some dynamical 
process, the interaction of the relevant variables over the time. Because the effect of all the other 
(unobserved) variables is already reflected in the series of the observed input, one can recreate a 
topologically equivalent picture of the original multidimensional system behaviour by using the time 
series of a single observable variable [5]. Furthermore, the rules that govern the behaviour of the 
original system can be recovered from its output. 

 Recurrence plots are intricate and visually appealing [6]. They are useful for finding hidden 
correlations in highly complicated data. Because they make no demands on the stationarity of a data 
set, RPs are particularly useful in the analysis of systems whose dynamics may be changing. The use 
of recurrence plots in time-series analysis has become more common in recent years, particularly in 
the area of physiology, for instance, they have been used to discern between “quiet“ and “active“ 
breathing in laboratory rats [7] or to study neuronal spike trains in cats [8]. RPs have been also used in 
mathematical problems primarily to identify transition points in non-stationary data sets [9], and in the 
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area of molecular dynamics simulations as a tool for the detection of transients and both linear and 
nonlinear state changes.  

 An RP is a two-dimensional representation of a single trajectory. The time series spans both 
ordinate and abscissa and each point (i, j) on the plane is shaded according to the distance between the 
two corresponding trajectory points yi and yj. In an unthresholded RP (UTRP) the pixel lying at (i, j) is 
color-coded according to the distance, while in a thresholded RP (TRP) the pixel lying at (i, j) is black 
if the distance falls within a specified threshold corridor and white otherwise. RPs are symmetrical 
along the x = y axis, where each point is plotted against itself, and this diagonal roughly represents 
time [10]. Figure 1 shows UTRPs generated from four different data sets: (a) a time series 
electrocardiogram, (b) a time series of a Brownian motion, (c) a time series of a Dow Jones index. The 
colors on these plots range from white for very small spacing to dark blue for large inter-point 
distances, as shown on the calibration bars in the figure. With this in mind, the sine-wave RP is 
relatively easy to understand; each of the “blocks“ of colour simply represents half a period of the 
signal. The RP generated from a chaotic data set is far more complicated, although it too has block-
like structures resembling to what might be expected from a periodic signal. For random signal, the 
uniform (even) distribution of colours over the entire RP is expected and the colours on the UTRP for 
the time sequence “deepen“ away from the main diagonal.  

 

 
a b c 

Figure 1  Recurrence plots of (a) a time series electrocardiogram, (b) a time series of a Brownian 
motion, (c) a time series of a Dow Jones index. On the right side of each recurrence plot is shown 
calibration bar showing its colour range. 

 

The basic idea behind the interpretation of the RPs is simple: if the underlying signal is truly 
random and has no structure, the distribution of colours over the RP will be uniform, and so there will 
not be any identifiable patterns. If, on the other hand, there is some determinism in the signal 
generator, it can be detected by some characteristic, distinct distribution of colours. The main 
advantage of the recurrence plots over another widely used techniques as for example Fourier analysis, 
is that they preserve both temporal and spatial dependence in the time series. Even though Fourier 
analysis reveals the distribution of spectral frequencies, it does not show how self-similar, resonant 
frequencies are patterned as a function of time. Yet, RP is mostly a qualitative tool and the precise 
meaning of the patterns is unknown. 

 Recurrence plots of the obtained time series from the DRP simulations we performed, were 
created with the program Visual Recurrence Analysis (VRA) provided by E. Kononov [11]. In VRA, a 
one-dimensional time series from a data file is expanded into a higher-dimensional space, in which the 
dynamic of the underlying generator takes place. This is done using a technique called "delayed 
coordinate embedding", which recreates a phase space portrait of the dynamical system under study 
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from a single (scalar) time series. To expand a one-dimensional signal into an m-dimensional phase 
space, one substitutes each observation in the original signal X(t) with vector 
 y(i) = {x(i), x(i - T), x(i - 2T), ..., x(i - (d - 1)T)}  (1) 
where i is the time index, d is the embedding dimension and T represents the time delay. As a result, 

we have a series of vectors 

 Y = [y(1), y(2), y(3), ..., y(N - (d - 1)T)]  (2) 
where N is the length of the original series. Using T = 1 merely returns the original time series; one-
dimensional embedding is equivalent to no embedding at all. Proper choice of the time delay and the 
embedding dimension is said to be critical to this type of phase space reconstruction. Only correct 
values of these two parameters yield embeddings that are guaranteed to be topologically equivalent to 
the original (unobserved) phase-space dynamics [5].  

Once the dynamical system is reconstructed, a recurrence plot can be used to show which 
vectors in the reconstructed or original space are close and far from each other. VRA calculates the 
Euclidean distances between all pairs of vectors and codes them as colors.  

Essentially, UTRP is a color-coded matrix D, where each [i][j]th entry is calculated as the 
distance between vectors Y(i) and Y(j) in the reconstructed series 

 222 ))1())1(((...))()(())()(( dmjxdmixdjxdixjxixDij −−−−−++−−−+−=   (3) 

in the case of d = 1  
 )()( jxixDij −=   (4) 

After the distances between all vectors are calculated, they are mapped to colors from the 
predefined colour map and are displayed as coloured pixels in their corresponding places.  

3. Calculation of fractal dimension 
The images were analysed using program HarFA 5.1 provided by O. Zmeskal [12] based on the 

improved box counting method where binary images were covered with different grids (box length ε), 
and the number of boxes N(ε) required to cover the structures of the images is recorded 

.  
 
If an object is fractal, N(ε) increases according to the relation 

   (5) DCN εε =)(

where D is fractal dimension and C is a constant. From this equation the fractal dimension can be 
obtained as  
 )}log(/))(log({lim

0
εε

ε
ND −

→
= .  (6) 

The HarFA code is based on counting of squares (black, white, and partially black) from a squared 
network behind the fractal figure. The difference between calculated and exact values of fractal 
dimensions obtained using HarFA is very small (e.g. for Sierpinsky triangle the error is less than 0.2 %). 
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4. Comparison of regular and chaotic systems 
Determinism in the mathematical sense means that there exists an autonomous dynamical system, 

defined by a first order ordinary differential equation  in a state space Γ ⊂ Rd, which we 
assume to be observed through a single measurable quantity h(x). The system thus possesses d natural 
variables, but the measurement is usually nonlinear projection onto a scalar value. Deterministic chaos 
offers an interesting explanation for the emergence of aperiodicity and unpredictability. Since rather 
simple systems exhibit chaos, one is lead to use nonlinear time series methods to verify whether such 
source of unpredictability is underlying a given observation. In fact, the concept of deterministic low-
dimensional chaos has proven to be fruitful in the understanding of many complex phenomena despite 
the fact that very few natural systems have actually been found to be low-dimensional deterministic in 
the sense of the theory. Deterministic chaos is not the only, and not even the most probable source of 
aperiodicity. The superposition of a large number of active degrees of freedom can produce extremely 
complicated signals, which may not be distinguishable from randomness. Stochasticity in the sense 
that a system is driven by processes whose dynamics are too complex to be inferred from the 
information stored in the observations is the most frequent source of unpredictability in open systems 
and field measurements. 

)(
.

xx f=

To investigate the capabilities of this method we have used three time series, sine function – 
prototype of regular deterministic signal, the same signal slightly perturbed with white noise, and 
white noise itself. In Figure 2 are shown the series together with their recurrence plots produced using 
VRA program. These plots (images without the frames, bars and captions, of course) were then 
analyzed using HarFA program. The obtained fractal dimensions are shown in Figure 3. As can be 
seen the fractal dimensions in this case correlate with the complexity of the signals. 

 

 
  

 
a b c 

Figure 2  Time series and recurrence plots of (a) time series derived by sampling the function sin(t), 
(b) a time series of a sine perturbed with white noise signal, (c) a time series of a random signal 
(white noise). On the right side of each recurrence plot is shown calibration bar showing its colour 
range. 
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Figure 3 Fractal dimensions of a recurrence plots of the corresponding time series. 

 

5. Applications in heart physiology 
In the mid-1880's Ludwig and Waller discovered that the electrical activity of the heart could be 

monitored through the skin. Their device, called a capillary electrometer, used sensor electrodes and 
magnets to generate an electrical field. A capillary tube with fluid was placed in the field. As current 
passed through the electrodes, the field increased and decreased causing the fluid in the tube to bounce 
up and down. This device, as cool as they probably thought it was, was far too crude for clinical use. 
Einthoven devised a clever system for recording the same electrical activity on light-sensitive paper. 
Noticing a recurring pattern of movement, Einthoven named the prominent waves alphabetically, P, Q, 
R, S, and T the P-wave, representing the impulse across the atria to the A/V node; The QRS 
representing the impulse as it travels across the ventricles; the T-wave, representing the repolarisation 
of the ventricles (Figure 4). 

 
 

Figure 4 Anatomy of the heart with assignment of P, Q, R, S, T, and P waves. 
 

Inter-beat intervals of a two groups of healthy subjects, young (mean age 27 yr.) as well as 5 old 
(mean age 74 yr.) were analysed in our recent study [13]. A. L. Goldberger, Harvard University, made 
these data available. Subjects lay supine for 120 min while continuous ECG signals were collected. 
All subjects remained in an inactive state in sinus rhythm while watching the movie ”Fantasia” 
(Disney) to help maintain wakefulness. 
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Figure 5 Recurrence plots corresponding to ECG of a young (a) and an old person (b). 

 
The continuous ECG was digitised at 250 Hz. Each heart-beat was annotated using an automated 

arrhythmia detection algorithm, and each beat annotation was verified by visual inspection.  
The R-R interval (inter-beat interval) time series for each subject was then computed and using 

them we have constructed recurrence plots as those shown in Figure 5. 
Fractal dimensions of these plots are equal to 1.61 and 1.82 for old and young persons, respectively. 

This reflects the fact that the data obtained from old subjects have a more deterministic origin and the 
data obtained from young subjects are more random and complex. The complex dynamics of the 
healthy heart-beat arise from numerous coupled control systems and feedback loops that regulate the 
cardiac cycle on different time scales. Aging has a profound impact on many of the interacting neural 
and endocrine mechanisms that regulate heart rate, which may explain why the heart-rate time series 
loses much of its complex, irregular behaviour. This suggests that the distinctive patterns evident in 
recurrence plots of inter-beat intervals are empirically correlated with the age of the studied subjects, 
as they diagrammatically represent the complex dynamical interaction of the sympathetic and 
parasympathetic nervous systems. 

6. Conclusions 
In this study we have for the first time demonstrated fractal nature of recurrence plots and used 

fractal dimension of these images for the interpretation of various time series. 
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