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Introduction 

The building industry is using modern materials that are usually extremely porous to 

improve the thermal insulation properties. The performance of these materials depends 

on their thermophysical properties. This paper discusses the heat transport properties in 

glass wool fibers measured by pulse transient method and deals with the use of new data 

evaluation method1. The method results from generalized relations that were designed 

for study of physical properties of fractal structures2. As it is shown these relations are 

in a good agreement with the equations used for the description of time responses of 

temperature for the pulse input of supplied heat3, 4, 5. Thermal parameters (specific heat, 

thermal diffusivity and thermal conductivity) calculated are corresponding for both 

methods. 

 

Theory 

The dependence of fractal structures’ (characterized by the fractal dimension D in E-

dimension space) temperature on the distance from heat source hT and on the time t was 

determined 1 using the theory of the space-time fractal field 2 
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where Q is the total heat transferred to the body from the heat source with the thermal 

conductivity ac ρλ p= . This relation3, 4, 5 is applicable for fractal dimensions D = 0, 1, 2 

and topological dimension E = 3, see Fig. 1. 

 



 
Fig. 1 Heat flow geometry for a) plane-parallel, b) cylindrical and c) spherical 

coordinates Euclidean space. 

 

From this equation the thermal diffusivity at the maximal time can be determined 
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where fa is a coefficient that characterizes the deformation of the thermal field5. This 

coefficient is equal to one for the ideal plane source (E = 3, D = 2). The maximum 

temperature of the response for Dirac thermal pulse is obtained by introducing of the 

thermal diffusivity (2) in the term (1) 
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It is possible to definite the coefficient fa (fractal dimension D respectively) for every 

point of the experimental dependence 
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The relations on the left side are used for the temperature increase; the relations on the 

right side are used for the temperature decrease. The value of the coefficient fa could be 

also affected by the geometry of sample5 or by the finite pulse width6, too. When the 

value fa is known it is feasible to determine the parameters of the studied thermal 

system. 

 



Experimental 

The Thermophysical Transient Tester 1.02 was used for measuring of the responses to 

the pulse heat. It was developed at the Institute of Physics, Slovak Academy of 

Science6. 

Thermal responses from Slovak Academy were used for the data evaluation. The 

measured sample was round shaped with diameter R = 0,03 m. Its density was 

ρ = 77,9 kg.m–3 for its thickness h = 0,0075 mm, the thermal conductivity was 

λ = 0,0254 W.m–2.K–1. 

 

Results 

The Fig. 2 represents the typical time responses of temperature for the pulse of input 

power. The coefficient fa of the fractal heat source for every point of the experimental 

dependence was calculated using the Eq. (4). The fractal heat source characterizes the 

distribution of the temperature in the specimen in specific time. From the Fig. 3 it is 

evident that for very short time there is the value of the fractal dimension D ≈ 2 and 

therefore, the plane heat source is formed. The value of the fractal dimension decreases 

with increasing time value since the heat disperses into the space. From the time 

τ1 ≈ 16 s (the intersection of tangents of the curves) the fractal dimension is getting 

settled to the value D ≈ 0,15. The spatial distribution of the temperature in the sample 

does not change yet in this area. It is possible to determine the coefficient of the heat 

source fa0 = 1 and the diffusivity of the specimen 127 sm10679.4 −−⋅≈a  from the 

extrapolated value of the fractal dimension to the time t = 0 s. This value is identical to 

value determined by the Institute of Physic, Slovak Academy of Sciences, Bratislava. 



 
Fig. 2 Thermal response of the sample measured by the pulse transient method. 

 

From the descending characteristic we can again determine, by using (4) for each point 

of experimental dependence of measured temperature on time, coefficient fa, fractal 

dimension D of the fractal source “of cold” presented by specimen surface. From 

Fig. 3b it is evident that there are not any cold spots over the surface of specimen for 

time intervals close to the maximum. With rising time the value of fractal dimension of 

decreasing temperature is smaller again until the value D ≈ 2. This is a fractal dimension 

of the specimen surface. 

 



Fig. 3 Fractal dimension of the heat distribution in the specimen from a) increased and 

from b) decreased part of characteristics. 

 

Conclusion 

In this article, the results of thermal responses to the pulse of supplied heat evaluations 

are discussed. To interpret the outcomes, the simplified heat conductivity model is 

used1. The model is based on expectations3. Results show the image of heat distribution 

in the specimen, in various time intervals after the heat supply from the source. These 

evaluations could be used for more accurate determination of the thermal parameters of 

studied matters. 
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